首页> 美国卫生研究院文献>BMC Proceedings >Genome-wide association studies of rheumatoid arthritis data via multiple hypothesis testing methods for correlated tests
【2h】

Genome-wide association studies of rheumatoid arthritis data via multiple hypothesis testing methods for correlated tests

机译:类风湿关节炎数据的全基因组关联研究通过多种假设检验方法进行相关检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genome-wide association studies often involve testing hundreds of thousands of single-nucleotide polymorphisms (SNPs). These tests may be highly correlated because of linkage disequilibrium among SNPs. Multiple testing correction ignoring the correlation among markers, as is done in the Bonferroni procedure, can cause loss of power. Several multiple testing adjustment methods accounting for correlations among tests have been developed and have shown improved power compared to the Bonferroni procedure. These methods include a Monte Carlo (MC) method and a method of computing p-values adjusted for correlated tests. The objective of this study is to apply these two multiple testing methods to genome-wide association study of the Genetic Analysis Workshop 16 rheumatoid arthritis data from the North American Rheumatoid Arthritis Consortium, to compare the performance of these two methods to the Bonferroni procedure in identifying susceptibility loci underlying rheumatoid arthritis, and to discuss the strengths and weaknesses of these methods. The results show that both the MC method and p-values adjusted for correlated tests method identified more significant SNPs, thus potentially have higher power than the corresponding Bonferroni methods using the same test statistics as in the MC method and p-values adjusted for correlated tests, respectively. Simulation studies demonstrate that the MC method may have slightly higher power than the p-values adjusted for correlated tests method.
机译:全基因组关联研究通常涉及测试数十万个单核苷酸多态性(SNP)。由于SNP之间的连锁不平衡,这些测试可能高度相关。像Bonferroni程序那样,忽略标记之间的相关性进行多次测试校正可能会导致功率损失。已经开发了几种考虑了测试之间相关性的多重测试调整方法,与Bonferroni程序相比,它们显示出更高的功效。这些方法包括蒙特卡洛(MC)方法和计算为相关测试调整的p值的方法。这项研究的目的是将这两种多重测试方法应用于遗传分析研讨会上来自北美类风湿关节炎协会的16种类风湿关节炎数据的全基因组关联研究,以比较这两种方法与Bonferroni程序在鉴定中的性能。类风湿关节炎的潜在易感位点,并讨论这些方法的优缺点。结果表明,MC方法和针对相关测试方法调整的p值均识别出更显着的SNP,因此与使用与MC方法相同的测试统计数据和针对相关测试调整的p值进行调整的p值相比,相应的Bonferroni方法具有更高的功效, 分别。仿真研究表明,MC方法的功效可能略高于为相关测试方法调整的p值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号