首页> 美国卫生研究院文献>Journal of the Royal Society Interface >EuMoBot: replicating euglenoid movement in a soft robot
【2h】

EuMoBot: replicating euglenoid movement in a soft robot

机译:EuMoBot:在软机器人中复制鹰骨运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Swimming is employed as a form of locomotion by many organisms in nature across a wide range of scales. Varied strategies of shape change are employed to achieve fluidic propulsion at different scales due to changes in hydrodynamics. In the case of microorganisms, the small mass, low Reynolds number and dominance of viscous forces in the medium, requires a change in shape that is non-invariant under time reversal to achieve movement. The Euglena family of unicellular flagellates evolved a characteristic type of locomotion called euglenoid movement to overcome this challenge, wherein the body undergoes a giant change in shape. It is believed that these large deformations enable the organism to move through viscous fluids and tiny spaces. The ability to drastically change the shape of the body is particularly attractive in robots designed to move through constrained spaces and cluttered environments such as through the human body for invasive medical procedures or through collapsed rubble in search of survivors. Inspired by the euglenoids, we present the design of EuMoBot, a multi-segment soft robot that replicates large body deformations to achieve locomotion. Two robots have been fabricated at different sizes operating with a constant internal volume, which exploit hyperelasticity of fluid-filled elastomeric chambers to replicate the motion of euglenoids. The smaller robot moves at a speed of body lengths per cycle (20 mm min−1 or 2.2 cycles min−1) while the larger one attains a speed of body lengths per cycle (4.5 mm min−1 or 0.4 cycles min−1). We show the potential for biomimetic soft robots employing shape change to both replicate biological motion and act as a tool for studying it. In addition, we present a quantitative method based on elliptic Fourier descriptors to characterize and compare the shape of the robot with that of its biological counterpart. Our results show a similarity in shape of 85% and indicate that this method can be applied to understand the evolution of shape in other nonlinear, dynamic soft robots where a model for the shape does not exist.
机译:自然界中许多自然界中的许多生物都将游泳作为一种运动形式。由于流体动力学的变化,采用了多种多样的形状改变策略来实现不同尺度的流体推进。对于微生物而言,较小的质量,低的雷诺数和在介质中的粘性力占优势,要求形状的改变在时间反转下是不变的,以实现运动。 Euglena单细胞鞭毛家族进化了一种特征性的运动,称为类胚珠运动,以克服这一挑战,其中人体发生了巨大的形状变化。据信,这些大的变形使生物能够在粘性流体和微小空间中移动。彻底改变身体形状的能力在设计用于在狭窄空间和混乱环境中移动的机器人特别有吸引力,例如通过人体进行侵入性医疗程序或通过塌陷的瓦砾寻找幸存者。受到长庚类动物的启发,我们提出了EuMoBot的设计,EuMoBot是一种多段软机器人,可以复制较大的身体变形以实现运动。已经制造了两个机器人,它们以不同的尺寸在恒定的内部体积下运行,它们利用充满流体的弹性腔体的超弹性来复制类胶质的运动。较小的机器人以每个周期的体长速度移动(20 mm min -1 或2.2周期min -1 ),而较大的机器人则以每个周期体长的速度移动循环(4.5 mm min -1 或0.4循环min -1 )。我们展示了仿生软机器人利用形状变化复制生物运动并充当研究它的工具的潜力。此外,我们提出了一种基于椭圆傅立叶描述子的定量方法,以表征和比较机器人的形状及其生物学对应物的形状。我们的结果显示了85%的形状相似度,表明该方法可用于了解其他不存在形状模型的非线性动态软机器人中形状的演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号