首页> 美国卫生研究院文献>BMC Genetics >Machine learning and data mining in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19
【2h】

Machine learning and data mining in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19

机译:复杂基因组数据中的机器学习和数据挖掘-遗传分析研讨会19的经验教训回顾

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the analysis of current genomic data, application of machine learning and data mining techniques has become more attractive given the rising complexity of the projects. As part of the Genetic Analysis Workshop 19, approaches from this domain were explored, mostly motivated from two starting points. First, assuming an underlying structure in the genomic data, data mining might identify this and thus improve downstream association analyses. Second, computational methods for machine learning need to be developed further to efficiently deal with the current wealth of data.In the course of discussing results and experiences from the machine learning and data mining approaches, six common messages were extracted. These depict the current state of these approaches in the application to complex genomic data. Although some challenges remain for future studies, important forward steps were taken in the integration of different data types and the evaluation of the evidence. Mining the data for underlying genetic or phenotypic structure and using this information in subsequent analyses proved to be extremely helpful and is likely to become of even greater use with more complex data sets.
机译:在当前的基因组数据分析中,鉴于项目的复杂性不断提高,机器学习和数据挖掘技术的应用变得越来越有吸引力。作为“遗传分析研讨会19”的一部分,探索了这一领域的方法,主要是从两个出发点出发。首先,假设基因组数据中存在基础结构,数据挖掘可能会识别出这一点,从而改善下游关联分析。其次,需要进一步开发用于机器学习的计算方法,以有效地处理当前的大量数据。在讨论机器学习和数据挖掘方法的结果和经验的过程中,提取了六种常见消息。这些描述了这些方法在复杂基因组数据应用中的当前状态。尽管未来的研究仍面临一些挑战,但在整合不同数据类型和评估证据方面仍采取了重要的前瞻性步骤。事实证明,挖掘基础遗传或表型结构的数据并在后续分析中使用此信息非常有帮助,并且在更复杂的数据集中可能会变得更加有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号