首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Heterogeneity in susceptible–infected–removed (SIR) epidemics on lattices
【2h】

Heterogeneity in susceptible–infected–removed (SIR) epidemics on lattices

机译:网格上易感性感染(SIR)流行病的异质性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The percolation paradigm is widely used in spatially explicit epidemic models where disease spreads between neighbouring hosts. It has been successful in identifying epidemic thresholds for invasion, separating non-invasive regimes, where the disease never invades the system, from invasive regimes where the probability of invasion is positive. However, its power is mainly limited to homogeneous systems. When heterogeneity (environmental stochasticity) is introduced, the value of the epidemic threshold is, in general, not predictable without numerical simulations. Here, we analyse the role of heterogeneity in a stochastic susceptible–infected–removed epidemic model on a two-dimensional lattice. In the homogeneous case, equivalent to bond percolation, the probability of invasion is controlled by a single parameter, the transmissibility of the pathogen between neighbouring hosts. In the heterogeneous model, the transmissibility becomes a random variable drawn from a probability distribution. We investigate how heterogeneity in transmissibility influences the value of the invasion threshold, and find that the resilience of the system to invasion can be suitably described by two control parameters, the mean and variance of the transmissibility. We analyse a two-dimensional phase diagram, where the threshold is represented by a phase boundary separating an invasive regime in the high-mean, low-variance region from a non-invasive regime in the low-mean, high-variance region of the parameter space. We thus show that the percolation paradigm can be extended to the heterogeneous case. Our results have practical implications for the analysis of disease control strategies in realistic heterogeneous epidemic systems.
机译:渗流范式在疾病在邻近宿主之间传播的空间显式流行模型中广泛使用。它已经成功地确定了入侵的流行阈值,将疾病永远不会侵袭系统的非入侵方案与入侵概率为正的入侵方案区分开。但是,其功率主要限于同类系统。当引入异质性(环境随机性)时,如果没有数值模拟,通常无法预测流行阈值。在这里,我们分析了异质性在二维晶格上的随机易感性感染去除流行模型中的作用。在同质情况下,等效于键渗透,入侵的可能性由单个参数控制,即病原体在相邻宿主之间的传播能力。在异构模型中,可传递性成为从概率分布得出的随机变量。我们研究了可传递性的异质性如何影响入侵阈值,并发现可以通过两个控制参数(可传递性的均值和方差)适当地描述系统对入侵的弹性。我们分析二维相位图,其中阈值由相界表示,该相界将高均值,低方差区域中的侵入性方案与非均质性的低均值,高方差区域中的非侵入性方案分开参数空间。因此,我们证明了渗流范式可以扩展到异构情况。我们的结果对现实的异构流行病系统中疾病控制策略的分析具有实际意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号