首页> 美国卫生研究院文献>The Journal of Physiology >Slow recovery from inactivation regulates the availability of voltage-dependent Na+ channels in hippocampal granule cells hilar neurons and basket cells
【2h】

Slow recovery from inactivation regulates the availability of voltage-dependent Na+ channels in hippocampal granule cells hilar neurons and basket cells

机译:失活的缓慢恢复调节海马颗粒细胞肺门神经元和篮状细胞中电压依赖性Na +通道的可用性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="enumerated" style="list-style-type:decimal">Fundamental to the understanding of CNS function is the question of how individual neurons integrate multiple synaptic inputs into an output consisting of a sequence of action potentials carrying information coded as spike frequency. The availability for activation of neuronal Na+ channels is critical for this process and is regulated both by fast and slow inactivation processes. Here, we have investigated slow inactivation processes in detail in hippocampal neurons.Slow inactivation was induced by prolonged (10-300 s) step depolarisations to -10 mV at room temperature. In isolated hippocampal dentate granule cells (DGCs), recovery from this inactivation was biexponential, with time constants for the two phases of slow inactivation τslow,1 and τslow,2 ranging from 1 to 10 s and 20 to 50 s, respectively. Both τslow,1 and τslow,2 were related to the duration of prior depolarisation by a power law function of the form τ(t) =a (t/a)b, where t is the duration of the depolarisation, a is a constant kinetic setpoint and b is a scaling power. This analysis yielded values of a= 0.034 s and b= 0.62 for τslow,1 and a= 24 s and b= 0.30 for τslow,2 in the rat.When a train of action potential-like depolarisations of different frequencies (50, 100, 200 Hz) was used to induce inactivation, a similar relationship was found between the frequency of depolarisation and both τslow,1 and τslow,2 (a= 0.58 s, b= 0.39 for τslow,1 and a= 3.77 s and b= 0.42 for τslow,2).Using nucleated patches from rat hippocampal slices, we have addressed possible cell specific differences in slow inactivation. In fast-spiking basket cells a similar scaling relationship can be found (a= 3.54 s and b= 0.39) as in nucleated patches from DGCs (a= 2.3 s and b= 0.48) and non-fast-spiking hilar neurons (a= 2.57 s and b= 0.49).Likewise, comparison of human and rat granule cells showed that properties of ultra-slow recovery from inactivation are conserved across species. In both species ultra-slow recovery was biexponential with both τslow,1 and τslow,2 being related to the duration of depolarisation t, with a= 0.63 s and b= 0.44 for τslow,1 and a= 25 s and b= 0.37 for τslow,2 for the human subject.In summary, we describe in detail how the biophysical properties of Na+ channels result in a complex interrelationship between availability of sodium channels and membrane potential or action potential frequency that may contribute to temporal integration on a time scale of seconds to minutes in different types of hippocampal neurons.
机译:class =“ enumerated” style =“ list-style-type:decimal”> <!-list-behavior =枚举前缀-word = mark-type = decimal max-label-size = 0-> 理解中枢神经系统功能的基础是一个问题,即单个神经元如何将多个突触输入整合到由一系列动作电位组成的输出中,该动作电位序列携带编码为尖峰频率的信息。神经元Na + 通道激活的可用性对此过程至关重要,并且受快速和缓慢失活过程的调节。在这里,我们详细研究了海马神经元的缓慢失活过程。 缓慢失活是由室温下长时间(10-300 s)逐步去极化至-10 mV诱导的。在分离的海马齿状颗粒细胞(DGC)中,从这种失活中恢复是双指数的,缓慢失活的两个阶段的时间常数τslow,1和τslow,2分别为1到10 s和20到50 s。 τslow,1和τslow,2都通过形式为τ(t)= a(t / a) b 的幂律函数与先前去极化的持续时间相关,其中t是持续时间。在去极化中,a是恒定的动力学设定点,b是定标能力。该分析得出的结果是,大鼠τslow,1的值为a = 0.034 s,b = 0.62,τslow,2的值为a = 24 s,b = 0.30。 当一连串的动作电位像去极化时使用不同频率(50、100、200 Hz)的频率来诱导失活,去极化频率与τslow,1和τslow,2(a = 0.58 s,b = 0.39,τslow,1和对于τslow,a = 3.77 s,b = 0.42,2)。 使用大鼠海马切片的有核斑点,我们已经解决了慢速灭活中可能存在的细胞特异性差异。在快速掺料的篮状细胞中,可以发现类似的比例关系(a = 3.54 s和 b = 0.39),与DGC的有核斑块( a = 2.3 s和< em> b = 0.48)和非快速爆发的肺门神经元( a = 2.57 s和 b = 0.49)。 同样,人和大鼠颗粒细胞的比较表明,灭活后的超慢恢复特性在整个物种中均得到保留。在这两个物种中,超慢恢复是双指数的,τslow,1和τslow,2与去极化的持续时间 t 有关,其中 a = 0.63 s和对于τslow,1,b = 0.44,对于sslow,2, a = 25 s, b = 0.37,对于人类受试者。 总而言之,我们详细描述了Na + 通道的生物物理特性如何导致钠通道的可用性与膜电位或动作电位频率之间的复杂相互关系,这可能在时间尺度上有助于时间整合。在不同类型的海马神经元中持续数秒至数分钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号