首页> 美国卫生研究院文献>Chemical Science >Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
【2h】

Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

机译:从分子动力学中学习复杂化学的简化动力学蒙特卡洛模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.
机译:我们提出了一种新颖的统计学习框架,用于根据单个或很少的分子动力学模拟(MD)生成的数据自动高效地构建大规模基本反应网络的动力学动力学蒙特卡洛(KMC)模型。现有的用于从分子动力学中识别物种和反应的方法通常使用键长和持续时间标准,其中键长是由于对键振动频率的理解而引起的固定参数。相反,我们表明,对于高反应性系统,键合持续时间应为模型参数,该参数应选择为最大程度地提高所得统计模型的预测能力。我们在液态甲烷反应的高温,高压系统上演示了我们的方法,并表明,所学习的KMC模型能够对关键分子在时间上外推超过一个数量级。此外,我们的基本反应KMC模型使我们能够分离出最重要的一组反应,这些反应控制着MD模拟中发现的关键分子的行为。我们开发了一种新的数据驱动算法来减少化学反应网络,该算法可以作为整数程序解决,也可以使用L1正则化有效地解决,并将我们的结果与基于计数的简单还原进行比较。对于我们的液态甲烷系统,我们发现稀有反应在该系统中不起重要作用,并且发现从分子动力学观察到的大约2000个反应中,只有不到7%的再生对于甲烷随时间变化的分子浓度是必需的。这项工作中描述的框架为研究复杂化学系统的基因组方法铺平了道路,在那里可以重复使用昂贵的MD模拟数据,以促进越来越大和准确的基本反应和速率的基因组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号