首页> 美国卫生研究院文献>Journal of Stem Cells Regenerative Medicine >Proceedings of the Annual Plenary Session on Regenerative Medicine (PAPRM)
【2h】

Proceedings of the Annual Plenary Session on Regenerative Medicine (PAPRM)

机译:再生医学年度全体会议论文集(PAPRM)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human monoclonal antibodies (mAbs) are powerful tools as pharmaceutical agents to tackle cancer and infectious diseases. Antibodies (Abs) are present in blood at the concentration of 10 mg/ml and play a vital role in humoral immunity. Many therapeutic Abs have been reported since early 1980s. Human mAb technology was not available at that time and only the hybridoma technology for making mouse mAbs had been well established. In order to avoid various potential problems associated with use of mouse proteins, two different technologies to make human/mouse chimeric Ab as well as humanized Ab were developed crossing the various hurdles for almost twenty years and mAb based drugs such as rituximab, anti-CD20 Ab, and trastuzumab, anti-HER2 Ab, have been approved by the US Food and Drug Administration (FDA) for treatment of non-Hodgkin’s lymphoma and breast cancer in 1997 and 1998, respectively. These drugs are well recognized and accepted by clinicians for treatment of patients. The clinical outcome of the treatment with mAb has strongly encouraged the researchers to develop much more refined mAbs. In addition to chimeric Ab and humanized Ab, now human mAbs can be produced by two technologies. The first is transgenic mice that produce human Abs and the second is human Ab libraries using phage-display system.Until now, several hundreds of mAbs against several tens of antigens (Ags) have been developed and subjected to clinical examinations. While many Abs have been approved as therapeutic agents against hematological malignancies, the successful mAbs against solid tumors are still limited. However, many researchers have suggested that developing potential mAbs agents should be possible and incurable cancers may become curable within another decade. Though it is hard to say explicitly that this prediction is correct, a passion for this development should be worth supporting to lead to a successful outcome which will lead to patient benefits.Our institute has been working on newer technologies for developing human mAbs. For the comprehensive isolation of mAbs, we have developed a method known as ICOS (isolation of antigen–antibody complexes through organic solvent) method [] in which phage particles of an antibody (Ab) library are mixed with living cells which leads to formation of antigen (Ag)–Ab complexes on the cell surface. The mixture is then overlaid on organic solution and phage bound to cells are recovered from the precipitate after centrifugation[]. Further, for the rapid identification of Antigens (Ags) recognized by the several mAbs, we have developed the GFC [grouping of clones by flow cytometry (FCM)] method and the SlTE (simultaneous identification of clones through three dimensional ELISA) method (2). These methods helped us to identify 24 distinct tumour associated antigens (TAAs) that are associated with several carcinomas and we were able to isolate 432 human mAbs that specifically bound to one of the 24 TAAs[], making these mAbs potential therapeutic agents against a variety of cancers.To understand the way forward from our perspectives, a clear knowledge on the following are indispensable class="unordered" style="list-style-type:disc">Differences between human Abs and the other Abs such as mouse, chimeric and humanized Abs.Differences between Abs and small molecules.Differences between Abs and vaccination.How to materialize best agents using human mAbs. class="head no_bottom_margin" id="idm140489942659232title">References1. Akahori Y, Kurosawa G, Sumitomo M, Morita M, Muramatsu C, Eguchi K, Tanaka M, Suzuki K, Sugiura M, Iba Y, Sugioka A, Kurosawa Y. Isolation of antigen/antibody complexes through organic solvent (ICOS) method. Biochem Biophys Res Commun. 2009;378(4):832-5. [] []2. Kurosawa G, Sumitomo M, Akahori Y, Matsuda K, Muramatsu C, Takasaki A, Iba Y, Eguchi K, Tanaka M, Suzuki K, Morita M, Sato N, Sugiura M, Sugioka A, Hayashi N, Kurosawa Y. Methods for comprehensive identification of membrane proteins recognized by a large number of monoclonal antibodies. J Immunol Methods. 2009;351(1-2):1-12. [] [] class="page-breadcrumbs inline_list small"> » The intricacies of pluripotency 2014; 10 class="cit-iss">(2) class="cit-flpgs">: 50. class="fm-vol-iss-date">Published online 2014 Nov 28. class="sub-content-title">The intricacies of pluripotency1Deepa Bhartiya1Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, IndiaFind articles by class="fm-panel half_rhythm"> class="togglers"> class="fm-authors-info fm-panel hide half_rhythm" id="idm140489987073040_ai" style="display:none"> class="fm-affl" lang="en" id="au2">1Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, India> id="idm140489984646864">Corresponding Author: Dr. Deepa Bhartiya Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR) Mumbai, India class="fm-article-notes fm-panel half_rhythm"> class="permissions fm-panel half_rhythm hide" id="idm140489987073040_cpl" style="display:none"> class="fm-copyright half_rhythm"> © 2014 Journal of Stem Cells and Regenerative Medicine class="fm-copyright half_rhythm">This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. id="__sec2" class="tsec sec"> class="head no_bottom_margin" id="__sec2title">AbstractPluripotent stem cells derived from the inner cell mass of a blastocyst or obtained by reprogramming somatic cells using ‘Yamanaka factors’ are termed human embryonic stem (hES) and induced pluripotent stem (iPS) cells respectively. These stem cells have been reported to have maximum potential for regenerative medicine as they can differentiate into all three germ layers and 200 odd cell types in the body. However, lately it is being realized that hES cells differentiate into their fetal counterparts and whether they can regenerate adult organs requires more research. Simultaneously several autologous adult stem cell trials undertaken using blood cells isolated by various methods (adult stem cells are never enriched) conducted worldwide have resulted in mixed results. Whatever, beneficial effect observed in small pilot studies disappears once double blinded trials are undertaken. It is now believed that the beneficial effect observed is a growth factor effect rather than true regeneration.Against this background, a novel pluripotent stem cell has been reported which exist in adult body organs termed very small embryonic-like stem cells (VSELs). These cells were described for the first time by Professor Ratajczak’s group at the University of Louisville, USA. It is believed that when primordial germ cells (or their precursors) migrate along the dorsal mesentery to settle in the gonadal ridge, indeed settle in all the developing organs and survive throughout life. They are the stem cells sitting on the top of hierarchy of adult stem cells in the body, maintaining life-long homeostasis, serving as a back-up pool for adult stem cells and are possibly the embryonic remnants that get transformed into cancer stem cells under certain yet not well understood changes in the somatic microenvironment. They are relatively quiescent in nature and give rise to the progenitors which divide rapidly, form cysts (i.e. undergo clonal expansion), undergo further differentiation into tissue specific cells and are easily mobilized in case of any injury.Similar to hES and iPS cells, VSELs are pluripotent and may prove to be better than them in a clinic because (i) they can be isolated from autologous source and thus immune rejection issues do not exist (ii) they do not form teratoma and (iii) as they are pluripotent stem cells in adult organs, they will regenerate them efficiently. Various examples have been reported to demonstrate the potential of VSELs.
机译:人类单克隆抗体(mAbs)作为治疗癌症和传染病的药物是强大的工具。抗体(Abs)以10 mg / ml的浓度存在于血液中,在体液免疫中起着至关重要的作用。自1980年代初以来,已报道了许多治疗性Abs。当时尚无人类单克隆抗体技术,只有用于制造小鼠单克隆抗体的杂交瘤技术才被广泛确立。为了避免与使用小鼠蛋白质有关的各种潜在问题,已经开发出两种不同的技术来制备人/小鼠嵌合抗体和人源化抗体,跨越了二十多年的各种障碍,并开发了基于mAb的药物,例如利妥昔单抗,抗CD20 Ab和抗HER2 Ab曲妥珠单抗分别于1997年和1998年被美国食品和药物管理局(FDA)批准用于治疗非霍奇金淋巴瘤和乳腺癌。这些药物已为临床医生所公认并接受了患者的治疗。 mAb治疗的临床结果强烈鼓励研究人员开发出更多精制的mAb。除了嵌合抗体和人源化抗体外,现在可以通过两种技术生产人单克隆抗体。第一种是产生人类抗体的转基因小鼠,第二种是使用噬菌体展示系统的人类抗体文库。到目前为止,已经开发了针对数十种抗原(Ags)的数百种mAb并进行了临床检查。尽管许多抗体已被批准作为抗血液系统恶性肿瘤的治疗剂,但针对实体瘤的成功单克隆抗体仍然有限。但是,许多研究人员建议开发潜在的单克隆抗体药物应该是可能的,并且无法治愈的癌症可能会在未来十年内治愈。尽管很难明确地说出这种预测是正确的,但对这种发展的热情应该值得支持,以取得成功的结果,这将为患者带来利益。我们的研究所一直在研究开发人类单克隆抗体的新技术。为了全面分离mAb,我们开发了一种称为ICOS(通过有机溶剂分离抗原-抗体复合物)的方法 [] ,其中将抗体(Ab)库的噬菌体颗粒与活细胞导致在细胞表面形成抗原(Ag)-Ab复合物。然后将混合物覆盖在有机溶液上,离心后从沉淀物中回收与细胞结合的噬菌体 [] 。此外,为了快速鉴定被几种单克隆抗体识别的抗原(Ags),我们开发了GFC [通过流式细胞术(FCM)进行克隆分组]方法和SlTE(通过三维ELISA同时鉴定克隆)方法(2 )。这些方法帮助我们鉴定了与几种癌相关的24种不同的肿瘤相关抗原(TAA),并且我们能够分离432种与24种TAA [] 之一特异性结合的人单克隆抗体,从而使它们mAb可能抗多种癌症。要从我们的角度理解前进的方向,对以下内容的清楚了解是必不可少的 class =“ unordered” style =“ list-style-type:disc”> <!- list-behavior =无序前缀-word = mark-type = disc max-label-size = 0-> 人类Abs与其他Abs(例如小鼠,嵌合和人源化Abs)之间的差异。
  • Abs和小分子之间的差异。 Abs和疫苗接种之间的差异。 如何使用人单克隆抗体实现最佳试剂。 class =“ head no_bottom_margin“ id =” idm140489942659232title“>参考文献 1。赤ah Y,黑泽G,住友M,森田M,村松C,江口K,田中M,铃木K,杉浦M,Iba Y,Sugioka A,黑泽Y.通过有机溶剂(ICOS)方法分离抗原/抗体复合物。 Biochem Biophys Res Commun。 2009; 378(4):832-5。 [] [] 2。黑泽G,住友M,赤ah Y,松田K,村松C,高崎A,伊巴Y,江口K,田中M,铃木K,森田M,佐藤N,杉浦M,杉冈A,林正N,黑泽Y.全面鉴定被大量单克隆抗体识别的膜蛋白。 J免疫方法。 2009; 351(1-2):1-12。 [] [] class =“ page-breadcrumbs inline_list small”> »多能性的复杂性 <!-main-content-> 2014 ; 10 class =“ cit-iss”>(2) class =“ cit-flpgs”>:50。 class =“ fm-vol-iss-date”>已发布2014年11月28日在线。 class =“ sub-content-title”>多能性的复杂性 1 Deepa Bhartiya 1 干细胞生物学孟买国家生殖健康研究所(ICMR)系,印度通过 class =“ fm-panel half_rhythm”> class =“ togglers”> class =“ fm-authors-info fm-panel hide half_rhythm” id =“ idm140489987073040_ai” style = “ display:none”> class =“ fm-affl” lang =“ zh-cn” id =“ au2”> 1 国家生殖健康研究所(ICMR)的干细胞生物学系,印度孟买 > id =“ idm140489984646864”>通讯作者:印度孟买国家生殖健康研究所(ICMR)Deepa Bhartiya博士干细胞生物学系博士 > class =“ fm-article-notes fm-panel half_rhythm”> class =“ permissions fm-panel half_rhythm hide” id =“ idm140489987073040_cpl” style =“ display:none”> class =“ fm-copyright half_rhythm”>©2014干细胞与再生医学杂志 class =“ fm-copyright half_rhythm”>本文是根据非商业知识共享署名的条款发行的许可,允许无限制地用于非商业用途,d分发和在任何介质中的复制,只要适当引用了原始作品即可。 id =“ __ sec2” class =“ tsec sec”> class =源自囊胚内部细胞团或通过使用“ Yamanaka因子”对体细胞进行重编程而获得的多能干细胞被称为人类胚胎干(hES)和诱导性多能干。“ head no_bottom_margin” id =“ __ sec2title”>摘要 (iPS)单元。据报道,这些干细胞具有再生医学的最大潜力,因为它们可以在体内分化为所有三个细菌层和200种奇异细胞类型。然而,近来人们认识到hES细胞可以分化为胎儿,并且它们是否能够再生成年器官还需要更多的研究。同时,在世界范围内使用通过各种方法分离的血细胞进行的一些自体成人干细胞试验(成人干细胞从未富集)同时进行,结果不一。不管怎样,一旦进行了双盲试验,在小型试验研究中观察到的有益效果就会消失。现在认为,观察到的有益作用是生长因子作用而不是真正的再生。在这种背景下,已经报道了在成年人体器官中存在的新型多能干细胞,称为非常小的胚胎样干细胞(VSEL)。美国路易斯维尔大学的Ratajczak教授小组首次描述了这些细胞。可以认为,当原始生殖细胞(或其前体)沿着背肠系膜迁移并在性腺中定居时,实际上定居在所有发育器官中并在整个生命中生存。它们是位于成人成体干细胞阶层顶部的干细胞,可以维持终生的稳态,是成体干细胞的备用池,并且可能是胚胎残余物,可在以下条件下转化为癌症干细胞某些尚未完全了解的体细胞微环境变化。它们本质上是相对静止的,并产生祖细胞,这些祖细胞迅速分裂,形成囊肿(即经历克隆扩增),进一步分化成组织特异性细胞,并且在受到任何伤害的情况下很容易动员。与hES和iPS细胞类似,VSEL是多能的,在临床上可能会比他们更好,因为(i)它们可以从自体来源中分离出来,因此不存在免疫排斥问题(ii)它们不形成畸胎瘤;(iii)因为它们是多能干细胞在成年器官中,它们将有效地再生它们。已经报道了各种例子来证明VSEL的潜力。
  • 著录项

    相似文献

    • 外文文献
    • 中文文献
    • 专利
    代理获取

    客服邮箱:kefu@zhangqiaokeyan.com

    京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
    • 客服微信

    • 服务号