首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >Modelling of Asphalts Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis
【2h】

Modelling of Asphalts Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis

机译:使用分类和回归树(CART)分析对沥青的粘合行为建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The modification by polymers and nanomaterials can significantly improve different properties of asphalt. However, during the service life, the oxidation affects the constituents of modified asphalt and subsequently results in deviation from the desired properties. One of the important properties affected due to oxidation is the adhesive properties of modified asphalt. In this study, the adhesive properties of asphalt modified with the polymers (styrene-butadiene-styrene and styrene-butadiene) and carbon nanotubes were investigated. Asphalt samples were aged in the laboratory by simulating the field conditions, and then adhesive properties were evaluated by different tips of atomic force microscopy (AFM) following the existing functional group in asphalt. Finally, a predictive modelling and machine learning technique called the classification and regression tree (CART) was used to predict the adhesive properties of modified asphalt subjected to oxidation. The parameters that affect the behaviour of asphalt have been used to predict the results using the CART. The results obtained from CART analysis were also compared with those from the regression model. It was observed that the CART analysis shows more explanatory relationships between different variables. The model can predict accurately the adhesive properties of modified asphalts considering the real field oxidation and chemistry of asphalt at a nanoscale.
机译:聚合物和纳米材料的改性可以显着改善沥青的不同性能。但是,在使用寿命期间,氧化会影响改性沥青的成分,并随后导致偏离所需性能。由于氧化而影响的重要性能之一是改性沥青的粘合性能。在这项研究中,研究了用聚合物(苯乙烯-丁二烯-苯乙烯和苯乙烯-丁二烯)和碳纳米管改性的沥青的粘合性能。通过模拟田间条件在实验室中对沥青样品进行老化,然后根据沥青中现有的官能团,通过原子力显微镜(AFM)的不同尖端评估粘合性能。最后,一种称为分类和回归树(CART)的预测建模和机器学习技术可用于预测经过氧化的改性沥青的粘合性能。影响沥青性能的参数已用于使用CART预测结果。还将从CART分析获得的结果与回归模型进行了比较。据观察,CART分析显示了不同变量之间的更多解释关系。考虑到沥青的真实现场氧化和化学性质,该模型可以准确预测改性沥青的粘合性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号