首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme
【2h】

EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

机译:使用基于张量的多类多峰分析方案的混合脑机接口的脑电分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.
机译:基于脑电图(EEG)的脑机接口(BCI)系统通常利用一种类型的大脑振荡动力学变化进行控制,例如事件相关的去同步/同步(ERD / ERS),稳态视觉诱发电位( SSVEP)和P300诱发电位。最近的趋势是在一个系统中检测多个以上信号以创建混合BCI。但是,在这种情况下,脑电图数据总是分为几组,并通过单独的处理程序进行分析。结果,当同时执行不同类型的BCI任务时,交互作用将被忽略。在这项工作中,我们提出了一种改进的基于张量的多类多模态方案,特别是对于混合BCI,其中将EEG信号表示为多向张量,提出了非冗余秩一张量分解模型以获得非冗余张量分量,设计了加权Fisher准则在不忽略交互作用的情况下选择多模式判别模式,支持向量机(SVM)扩展为多类分类。实验结果表明,该方案不仅可以识别出不同类型任务引起的脑震荡动力学的不同变化,而且可以恰当地捕捉到同时任务的交互作用。因此,它在混合BCI中具有巨大的潜在用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号