首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses
【2h】

A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

机译:具有动态突触的尖峰网络的强化学习框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.
机译:提出了基于Hebbian的规则和强化学习(RL)规则的集成,以实现动态突触。提出的框架允许Hebbian规则更新隐藏的突触模型参数,以调节突触反应而不是突触权重。每次尝试后,都使用奖励信号中时间差异的值和符号来执行此操作。应用此框架,对带有与尖峰时序相关的突触的尖峰网络进行了测试,以学习基于时间编码的异或计算。奖励值是根据网络的输出峰值序列与参考目标之间的距离计算得出的。结果表明,该网络能够捕获所需的动态信息,并且所提出的框架确实可以揭示Hebbian和RL的集成版本。所提出的框架是易处理的并且在计算上较便宜。该框架适用于各种突触模型,并且不限于所使用的神经表示。这种普遍性以及所报告的结果支持在广泛的直观信号处理中采用引入的方法,从生物学上合理的突触模型中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号