首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions
【2h】

The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions

机译:携带多个基因缺失的酵母菌株生成的绿色怪物过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative.In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated.Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (>Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (>Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction.The first step is to prepare haploid single-mutants termed 'ProMonsters,' each of which carries a GFP reporter in a deleted locus and one of the 'toolkit' loci—either Green Monster GMToolkit->a or GMToolkit-α at the can1Δ locus (>Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the >a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids.The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.
机译:仅当在特定的遗传背景或环境条件下测试突变时,才经常揭示基因缺失的表型 1,2 。在某些例子中,需要删除许多基因以揭示隐藏的基因功能 3,4 。尽管有重要发现的潜力,但涉及三个或更多基因的遗传相互作用仍未得到充分探索。由于缺失的可能组合的数目众多,因此穷举搜索多突变相互作用将是不切实际的。然而,对选定的基因组(例如具有共同功能的先验可能性更高的旁系同源物组)的研究将是有益的。在酿酒酵母中,基因敲除是通过同源选择基因将基因替换为选择标记来完成的重组。由于标记的数量有限,因此已开发出用于删除和重复使用相同标记的方法 5,6,7,8,9,10 。但是,使用这些方法顺序工程化多个突变是费时的,因为所需的时间与要产生的缺失的数目成线性比例。在此,我们描述了Green Monster方法,用于在酵母 11 中常规工程化多重缺失。 。在这种方法中,整合到缺失中的绿色荧光蛋白(GFP)报告基因用于根据每个菌株中缺失的数量对菌株进行定量标记(>图1 )。通过酵母交配和减数分裂的GFP标记的缺失的重复回合加上携带更多这些缺失的菌株的流式细胞术富集导致菌株中缺失的积累(>图2 )。并行执行多个过程,每个过程每轮包含一个或多个缺失,可减少菌株构建所需的时间。第一步是制备称为“ ProMonsters”的单倍体单突变体,每个单突变体均携带一个GFP报告基因。位点和“工具箱”基因座之一-can1Δ位点处的Green Monster GMToolkit- > a 或GMToolkit-α(>图3 )。使用来自酵母缺失集合 12 的菌株,可以通过用通用GFP-URA3片段替换这些菌株中存在的常见KanMX4盒,方便地产生GFP标记的缺失。每个GMToolkit都包含:> a -或α-交配类型特定的单倍体选择标记 1 ,以及同时存在两个GMToolkit时恰好在一起的两个标记之一第二步是进行性循环,通过该循环可以通过伴随每个交配和孢子形成周期的随机分类和/或减数分裂重组在单个细胞内结合缺失基因座。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号