首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Classification of Human Motions Using Micro-Doppler Radar in the Environments with Micro-Motion Interference
【2h】

Classification of Human Motions Using Micro-Doppler Radar in the Environments with Micro-Motion Interference

机译:在微运动干扰环境中使用微多普勒雷达对人类运动进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human motion classification based on micro-Doppler effect has been widely used in various fields. However, the motion classification performance would be greatly degraded if the wireless environment has non-target micro-motion interference. In this case, the interference signal aliases with the signal of target human motions and then generates cross-terms, making the signals hard to be used to identify target human motions. Existing methods do not consider this non-target micro-motion interference and have poor resistance to such interference. In this paper, we propose a target human motion classification system that can work in the scenarios with non-target micro-motion interference. Specifically, we build a continuous wave radar transceiver working in a low-frequency radar band using the software defined radio equipment Universal Software Radio Peripheral (USRP) N210 to collect signals. Moreover, we use Empirical Mode Decomposition and S-transform successively to remove non-target micro-motion interference and improve the time-frequency resolution of the raw signal. Then, an Energy Aggregation method based on S-method is proposed, which can suppress cross-terms and background noise. Furthermore, we extract a set of features and classify four human motions by adopting Bagged Trees. Extensive experiments using the test-bed show that under the scenarios with non-target micro-motion interference, 97.3% classification accuracy can be achieved.
机译:基于微多普勒效应的人体运动分类已广泛应用于各个领域。但是,如果无线环境具有非目标微运动干扰,则运动分类性能将大大降低。在这种情况下,干扰信号会与目标人体运动的信号混叠,然后生成交叉项,使得这些信号难以用于识别目标人体运动。现有方法没有考虑这种非目标微运动干扰,并且对这种干扰的抵抗力很差。在本文中,我们提出了一种目标人体运动分类系统,该系统可以在具有非目标微运动干扰的情况下工作。具体来说,我们使用软件定义的无线电设备通用软件无线电外围设备(USRP)N210来构建工作在低频雷达频段的连续波雷达收发器,以收集信号。此外,我们依次使用经验模态分解和S变换来消除非目标微运动干扰,并提高原始信号的时频分辨率。然后,提出了一种基于S方法的能量聚集方法,该方法可以抑制交叉项和背景噪声。此外,我们提取了一组特征并通过采用袋装树将四个人体运动分类。使用试验台进行的大量实验表明,在存在非目标微运动干扰的情况下,可以实现97.3%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号