首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >AULD: Large Scale Suspicious DNS Activities Detection via Unsupervised Learning in Advanced Persistent Threats
【2h】

AULD: Large Scale Suspicious DNS Activities Detection via Unsupervised Learning in Advanced Persistent Threats

机译:AULD:通过高级持续威胁中的无监督学习进行大规模可疑DNS活动检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, sensors in the Internet of things have been commonly used in Human’s life. APT (Advanced Persistent Threats) has caused serious damage to network security and the sensors play an important role in the attack process. For a long time, attackers infiltrate, attack, conceal, spread, and steal information of target groups through the compound use of various attacking means, while existing security measures based on single-time nodes cannot defend against such attacks. Attackers often exploit the sensors’ vulnerabilities to attack targets because the security level of the sensors is relatively low when compared with that of the host. We can find APT attacks by checking the suspicious domains generated at different APT attack stages, since every APT attack has to use DNS to communicate. Although this method works, two challenges still exist: (1) the detection method needs to check a large scale of log data; (2) the small number of attacking samples limits conventional supervised learning. This paper proposes an APT detection framework AULD (Advanced Persistent Threats Unsupervised Learning Detection) to detect suspicious domains in APT attacks by using unsupervised learning. We extract ten important features from the host, domain name, and time from a large number of DNS log data. Later, we get the suspicious cluster by performing unsupervised learning. We put all of the domains in the cluster into the list of malicious domains. We collected 1,584,225,274 DNS records from our university network. The experiments show that AULD detected all of the attacking samples and that AULD can effectively detect the suspicious domain names in APT attacks.
机译:近年来,物联网中的传感器已广泛应用于人类的生活中。 APT(高级持续威胁)已严重损害网络安全,传感器在攻击过程中起着重要作用。长期以来,攻击者通过多种攻击手段的复合使用,渗透,攻击,隐藏,传播和窃取目标群体的信息,而基于单节点的现有安全措施无法抵御此类攻击。攻击者经常利用传感器的漏洞来攻击目标,因为与主机相比,传感器的安全级别相对较低。我们可以通过检查在不同的APT攻击阶段生成的可疑域来发现APT攻击,因为每种APT攻击都必须使用DNS进行通信。尽管这种方法可行,但仍然存在两个挑战:(1)检测方法需要检查大量日志数据。 (2)攻击样本数量少限制了传统的监督学习。本文提出了一种APT检测框架AULD(高级持久性威胁非监督学习检测),用于通过使用非监督学习来检测APT攻击中的可疑域。我们从大量DNS日志数据中提取主机,域名和时间的十个重要功能。稍后,我们通过执行无监督学习来获得可疑集群。我们将群集中的所有域都放入了恶意域列表中。我们从我们的大学网络收集了1,584,225,274个DNS记录。实验表明,AULD可以检测到所有攻击样本,并且AULD可以有效地检测APT攻击中的可疑域名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号