首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Study of Diagnostic Accuracy Using a Chemical Sensor Array and a Machine Learning Technique to Detect Lung Cancer
【2h】

A Study of Diagnostic Accuracy Using a Chemical Sensor Array and a Machine Learning Technique to Detect Lung Cancer

机译:使用化学传感器阵列和机器学习技术检测肺癌的诊断准确性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lung cancer is the leading cause of cancer death around the world, and lung cancer screening remains challenging. This study aimed to develop a breath test for the detection of lung cancer using a chemical sensor array and a machine learning technique. We conducted a prospective study to enroll lung cancer cases and non-tumour controls between 2016 and 2018 and analysed alveolar air samples using carbon nanotube sensor arrays. A total of 117 cases and 199 controls were enrolled in the study of which 72 subjects were excluded due to having cancer at another site, benign lung tumours, metastatic lung cancer, carcinoma in situ, minimally invasive adenocarcinoma, received chemotherapy or other diseases. Subjects enrolled in 2016 and 2017 were used for the model derivation and internal validation. The model was externally validated in subjects recruited in 2018. The diagnostic accuracy was assessed using the pathological reports as the reference standard. In the external validation, the areas under the receiver operating characteristic curve (AUCs) were 0.91 (95% CI = 0.79–1.00) by linear discriminant analysis and 0.90 (95% CI = 0.80–0.99) by the supportive vector machine technique. The combination of the sensor array technique and machine learning can detect lung cancer with high accuracy.
机译:肺癌是全世界癌症死亡的主要原因,肺癌筛查仍然具有挑战性。这项研究旨在开发一种使用化学传感器阵列和机器学习技术来检测肺癌的呼气试验。我们进行了一项前瞻性研究,以纳入2016年至2018年之间的肺癌病例和非肿瘤对照,并使用碳纳米管传感器阵列分析了肺泡空气样本。共有117例病例和199例对照者参加了研究,其中72例受试者因在其他部位患有癌症,良性肺肿瘤,转移性肺癌,原位癌,微创腺癌,接受过化疗或其他疾病而被排除在外。 2016年和2017年入学的受试者用于模型推导和内部验证。该模型在2018年招募的受试者中进行了外部验证。使用病理报告作为参考标准评估了诊断的准确性。在外部验证中,通过线性判别分析,接收器工作特性曲线(AUC)下的面积为0.91(95%CI = 0.79–1.00),而通过支持向量机技术,则为0.90(95%CI = 0.80–0.99)。传感器阵列技术和机器学习的结合可以高精度地检测肺癌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号