首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Improved Omnidirectional Odometry for a View-Based Mapping Approach
【2h】

Improved Omnidirectional Odometry for a View-Based Mapping Approach

机译:改进的全向里程表用于基于视图的映射方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents an improved visual odometry using omnidirectional images. The main purpose is to generate a reliable prior input which enhances the SLAM (Simultaneous Localization and Mapping) estimation tasks within the framework of navigation in mobile robotics, in detriment of the internal odometry data. Generally, standard SLAM approaches extensively use data such as the main prior input to localize the robot. They also tend to consider sensory data acquired with GPSs, lasers or digital cameras, as the more commonly acknowledged to re-estimate the solution. Nonetheless, the modeling of the main prior is crucial, and sometimes especially challenging when it comes to non-systematic terms, such as those associated with the internal odometer, which ultimately turn to be considerably injurious and compromise the convergence of the system. This omnidirectional odometry relies on an adaptive feature point matching through the propagation of the current uncertainty of the system. Ultimately, it is fused as the main prior input in an EKF (Extended Kalman Filter) view-based SLAM system, together with the adaption of the epipolar constraint to the omnidirectional geometry. Several improvements have been added to the initial visual odometry proposal so as to produce better performance. We present real data experiments to test the validity of the proposal and to demonstrate its benefits, in contrast to the internal odometry. Furthermore, SLAM results are included to assess its robustness and accuracy when using the proposed prior omnidirectional odometry.
机译:这项工作提出了一种使用全向图像的改进的视觉测距法。主要目的是生成可靠的先验输入,该输入在移动机器人技术的导航框架内增强了SLAM(同时定位和地图绘制)估计任务,从而损害了内部里程表数据。通常,标准SLAM方法广泛使用诸如主要先验输入之类的数据来定位机器人。他们也倾向于考虑使用GPS,激光或数码相机获取的感官数据,这是人们普遍认为的重新评估解决方案的方法。但是,主要先验的建模至关重要,有时在涉及非系统性术语(例如与内部里程表相关的术语)时尤其具有挑战性,这些术语最终会造成相当大的伤害并损害系统的收敛性。这种全向里程测量依赖于通过系统当前不确定性的传播而进行的自适应特征点匹配。最终,它融合为基于EKF(扩展卡尔曼滤波器)视图的SLAM系统中的主要先验输入,以及对极约束对全向几何的适应。最初的视觉里程计建议已添加了一些改进,以产生更好的性能。我们提出了真实的数据实验,以测试该建议的有效性并证明其优点(与内部测程法相反)。此外,当使用建议的现有全向里程表时,SLAM结果包括在内以评估其健壮性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号