首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >High Throughput Single-cell and Multiple-cell Micro-encapsulation
【2h】

High Throughput Single-cell and Multiple-cell Micro-encapsulation

机译:高通量单细胞和多细胞微封装

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency Pk=1 of 83.7% and a double-particle encapsulation efficiency Pk=2 of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Introduction Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify signals from bioreactor products. Drops also provide the ability to re-merge drops into larger aqueous samples or with other drops for intercellular signaling studies.1,2 The reduction in dilution implies stronger detection signals for higher accuracy measurements as well as the ability to reduce potentially costly sample and reagent volumes.3 Encapsulation of cells in drops has been utilized to improve detection of protein expression,4 antibodies,5,6 enzymes,7 and metabolic activity8 for high throughput screening, and could be used to improve high throughput cytometry.9 Additional studies present applications in bio-electrospraying of cell containing drops for mass spectrometry10 and targeted surface cell coatings.11 Some applications, however, have been limited by the lack of ability to control the number of cells encapsulated in drops. Here we present a method of ordered encapsulation12 which increases the demonstrated encapsulation efficiencies for one and two cells and may be extrapolated for encapsulation of a larger number of cells.To achieve monodisperse drop generation, microfluidic "flow focusing" enables the creation of controllable-size drops of one fluid (an aqueous cell mixture) within another (a continuous oil phase) by using a nozzle at which the streams converge.13 For a given nozzle geometry, the drop generation frequency f and drop size can be altered by adjusting oil and aqueous flow rates Qoil and Qaq. As the flow rates increase, the flows may transition from drop generation to unstable jetting of aqueous fluid from the nozzle.14When the aqueous solution contains suspended particles, particles become encapsulated and isolated from one another at the nozzle. For drop generation using a randomly distributed aqueous cell suspension, the average fraction of drops Dk containing k cells is dictated by Poisson statistics, where Dk = λk exp(-λ)/(k!) and λ is the average number of cells per drop. The fraction of cells which end up in the "correctly" encapsulated drops is calculated using Pk = (k x Dk)/Σ(k' x Dk'). The subtle difference between the two metrics is that Dk relates to the utilization of aqueous fluid and the amount of drop sorting that must be completed following encapsulation, and Pk relates to the utilization of the cell sample. As an example, one could use a dilute cell suspension (low λ) to encapsulate drops where most drops containing cells would contain just one cell. While the efficiency metric Pk would be high, the majority of drops would be empty (low Dk), thus requiring a sorting mechanism to remove empty drops, also reducing throughput.15Combining drop generation with inertial ordering provides the ability to encapsulate drops with more predictable numbers of cells per drop and higher throughputs than random encapsulation. Inertial focusing was first discovered by Segre and Silberberg16 and refers to the tendency of finite-sized particles to migrate to lateral equilibrium positions in channel flow. Inertial ordering refers to the tendency of the particles and cells to passively organize into equally spaced, staggered, constant velocity trains. Both focusing and ordering require sufficiently high flow rates (high Reynolds number) and particle sizes (high Particle Reynolds number).17,18 Here, the Reynolds number Re =uDh/ν and particle Reynolds number Rep =Re(a/Dh)2, where u is a characteristic flow velocity, Dh [=2wh/(w+h)] is the hydraulic diameter, ν is the kinematic viscosity, a is the particle diameter, w is the channel width, and h is the channel height. Empirically, the length required to achieve fully ordered trains decreases as Re and Rep increase. Note that the high Re and Rep requirements (for this study on the order of 5 and 0.5, respectively) may conflict with the need to keep aqueous flow rates low to avoid jetting at the drop generation nozzle. Additionally, high flow rates lead to higher shear stresses on cells, which are not addressed in this protocol. The previous ordered encapsulation study demonstrated that over 90% of singly encapsulated HL60 cells under similar flow conditions to those in this study maintained cell membrane integrity.12 However, the effect of the magnitude and time scales of shear stresses will need to be carefully considered when extrapolating to different cell types and flow parameters. The overlapping of the cell ordering, drop generation, and cell viability aqueous flow rate constraints provides an ideal operational regime for controlled encapsulation of single and multiple cells.Because very few studies address inter-particle train spacing,19,20 determining the spacing is most easily done empirically and will depend on channel geometry, flow rate, particle size, and particle concentration. Nonetheless, the equal lateral spacing between trains implies that cells arrive at predictable, consistent time intervals. When drop generation occurs at the same rate at which ordered cells arrive at the nozzle, the cells become encapsulated within the drop in a controlled manner. This technique has been utilized to encapsulate single cells with throughputs on the order of 15 kHz,12 a significant improvement over previous studies reporting encapsulation rates on the order of 60-160 Hz.4,15 In the controlled encapsulation work, over 80% of drops contained one and only one cell, a significant efficiency improvement over Poisson (random) statistics, which predicts less than 40% efficiency on average.12In previous controlled encapsulation work,12 the average number of particles per drop λ was tuned to provide single-cell encapsulation. We hypothesize that through tuning of flow rates, we can efficiently encapsulate any number of cells per drop when λ is equal or close to the number of desired cells per drop. While single-cell encapsulation is valuable in determining individual cell responses from stimuli, multiple-cell encapsulation provides information relating to the interaction of controlled numbers and types of cells. Here we present a protocol, representative results using polystyrene microspheres, and discussion for controlled encapsulation of multiple cells using a passive inertial ordering channel and drop generation nozzle.
机译:以前已经利用微流体封装方法来捕获皮升级的单分散液滴中的细胞,从而提供了从大体积流体环境的限制,并应用于高通量筛选,细胞计数和质谱分析中。我们描述了一种方法,它不仅可以封装单个细胞,而且可以重复捕获一定数量的细胞(在这里我们演示了一个和两个细胞的封装),以研究隔离和受控大小组中的细胞之间的相互作用。通过将液滴生成技术与细胞和颗粒排序相结合,我们证明了细胞大小的颗粒的受控包封,可实现高效,连续的包封。使用水性颗粒悬浮液和不混溶的碳氟化合物油,我们用流动聚焦喷嘴在油中产生了水性液滴。水性流速足够高,以产生以液滴产生频率的整数倍频率到达喷嘴的颗粒的有序排列,从而在每个液滴中封装了受控数量的细胞。对于代表性的结果,将9.9μm的聚苯乙烯颗粒用作细胞替代物。这项研究表明,单粒子封装效率Pk = 1为83.7%,双粒子封装效率Pk = 2为79.5%,而其泊松效率分别为39.3%和33.3%。已证明一致的细胞和颗粒浓度的影响对于有效封装至关重要,并且还解决了滴落至喷射过渡的问题。简介连续培养基水性细胞悬浮液共有一个共同的流体环境,该环境使细胞可以平行相互作用,并且还可以使特定细胞在培养基测量中的作用均匀化。将细胞高通量封装到皮升级液滴中,可以限制样品,以保护液滴免受交叉污染,可以测量样品中的细胞多样性,防止试剂和表达的生物标志物稀释,并放大来自生物反应器产品的信号。滴剂还具有将滴剂重新合并到较大的水性样品中或与其他滴剂进行细胞间信号传导研究的能力。 1,2 稀释液的减少意味着更强的检测信号,可实现更高的准确度测量以及以减少潜在的昂贵样品和试剂体积。 3 将细胞包裹在液滴中可改善蛋白质表达,<​​sup> 4 抗体, 5,6 酶, 7 和代谢活性 8 用于高通量筛选,可用于改善高通量细胞计数。 9 目前有其他研究用于质谱法 10 和目标表面细胞涂层的含液滴生物电喷雾技术。 11 然而,由于缺乏控制数量的能力,某些应用受到了限制封装在液滴中的细胞。在这里,我们提出了一种有序包封方法[sup> 12 ,该方法可以提高一个和两个细胞的包封效率,并且可以推断出更多细胞的包封率。要实现单分散液滴的产生,微流控“流聚焦” ”可以通过使用在其上会聚水流的喷嘴在一种流体(一种水性油混合物)(另一种油)中在另一种(连续油相)中创建尺寸可控的液滴。 13 对于给定的喷嘴几何形状,液滴的产生频率f和液滴尺寸可以通过调节油和水的流量Qoil和Qaq来改变。随着流速的增加,流量可能会从液滴的生成过渡到喷嘴的水性流体的不稳定喷射。 14 当水溶液中包含悬浮颗粒时,颗粒在喷嘴处被封装并彼此隔离。对于使用随机分布的水性细胞悬液产生液滴的过程,泊松统计决定了包含k个细胞的液滴Dk的平均分数,其中Dk =λ k exp(-λ)/(k!)和λ是每滴平均细胞数。使用Pk =(k x Dk)/Σ(k'x Dk')计算最终以“正确”封装的液滴滴落的细胞分数。这两个指标之间的细微差别是,Dk与水性流体的利用和封装后必须完成的液滴分选量有关,而Pk与细胞样品的利用有关。例如,可以使用稀释的细胞悬液(低λ)来封装液滴,其中大多数含有细胞的液滴只能含有一个细胞。尽管效率指标Pk很高,但大多数液滴将是空的(Dk低),因此需要一种分类机制来去除空的液滴 15 将墨滴生成与惯性排序相结合,就可以封装墨滴,每个墨滴的单元格数量可预测,并且吞吐量比随机封装更高。惯性聚焦是由Segre和Silberberg 16 首次发现的,它是指有限尺寸的颗粒在通道流中向侧向平衡位置迁移的趋势。惯性有序是指粒子和细胞被动组织成等间隔,交错,等速运动的趋势。聚焦和排序都需要足够高的流速(高雷诺数)和粒径(高颗粒雷诺数)。 17,18 在这里,雷诺数Re = uDh /ν和粒子雷诺数Rep = Re( a / Dh 2 ,其中 u 是特征流速, Dh [= 2wh /(w + h)]是水力直径,ν是运动粘度,a是粒径,w是通道宽度,并且h是通道高度。根据经验,随着Re和Re p 的增加,实现完全有序火车所需的长度会减少。请注意,较高的Re和Re p 要求(本研究分别为5和0.5的量级)可能与保持水流流速低以避免在液滴产生喷嘴处喷射的需求相冲突。此外,高流速导致细胞上的剪切应力较高,该方案未解决。先前的有序封装研究表明,在与本研究相似的流动条件下,超过90%的单封装HL60细胞保持了细胞膜的完整性。 12 但是,剪切应力的大小和时间尺度的影响外推到不同的细胞类型和流量参数时,需要仔细考虑。细胞有序性,液滴产生和细胞活力的水流约束条件的重叠为单细胞和多细胞的受控包封提供了理想的操作方案。因为很少有研究解决粒子间序列间距, 19,20 根据经验最容易确定间距,这将取决于通道的几何形状,流速,粒径和颗粒浓度。但是,列车之间的横向间距相等意味着单元以可预测的一致时间间隔到达。当液滴的产生与有序细胞到达喷嘴的速率相同时,细胞将以受控方式封装在液滴中。该技术已被用于封装吞吐量约为15 kHz, 12 的单个电池。与以前报道封装率约为60-160 Hz的研究相比,有了显着改进。 4,15 在受控封装工作中,超过80%的液滴包含一个且只有一个单元,这比Poisson(随机)统计数据显着提高了效率,后者预测平均效率不到40%。 12 在先前的受控封装工作中, 12 调整了每滴λ的平均粒子数以提供单细胞封装。我们假设通过调整流速,当λ等于或接近每滴所需的细胞数时,我们可以有效地封装每滴任何数量的细胞。虽然单细胞封装在确定来自刺激的单个细胞反应方面很有价值,但多细胞封装提供了与受控数量和细胞类型的相互作用有关的信息。在这里,我们介绍了一种协议,使用聚苯乙烯微球的代表性结果以及使用被动惯性有序通道和液滴生成喷嘴控制多个单元的封装的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号