首页> 外文期刊>Lab on a chip >The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities
【24h】

The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities

机译:单细胞化学恒温器:基于琼脂糖的微流控设备,用于细菌和细菌群落的高通量单细胞研究

获取原文
获取原文并翻译 | 示例
       

摘要

Optical microscopy of single bacteria growing on solid agarose support is a powerful method for studying the natural heterogeneity in growth and gene expression. While the material properties of agarose make it an excellent substrate for such studies, the sheer number of exponentially growing cells eventually overwhelms the agarose pad, which fundamentally limits the duration and the throughput of measurements. Here we overcome the limitations of exponential growth by patterning agarose pads on the sub-micron-scale. Linear tracks constrain the growth of bacteria into a high density array of linear micro-colonies. Buffer flow through microfluidic lines washes away excess cells and delivers fresh nutrient buffer. Densely patterned tracks allow us to cultivate and image hundreds of thousands of cells on a single agarose pad over 3CM10 generations, which drastically increases single-cell measurement throughput. In addition, we show that patterned agarose can facilitate single-cell measurements within bacterial communities. As a proof-of-principle, we study a community of E. coli auxotrophs that can complement the amino acid deficiencies of one another. We find that the growth rate of colonies of one strain decreases sharply with the distance to colonies of the complementary strain over distances of only a few cell lengths. Because patterned agarose pads maintain cells in a chemostatic environment in which every cell can be imaged, we term our device the single-cell chemostat. High-throughput measurements of single cells growing chemostatically should greatly facilitate the study of a variety of microbial behaviours.
机译:在固体琼脂糖支持下生长的单个细菌的光学显微镜是研究生长和基因表达中自然异质性的有力方法。尽管琼脂糖的材料特性使其成为此类研究的极佳底物,但指数增长的细胞数量却最终使琼脂糖垫不堪重负,这从根本上限制了测量的持续时间和通量。在这里,我们通过在亚微米尺度上构图琼脂糖垫来克服指数增长的局限性。线性轨道将细菌的生长限制为线性微菌落的高密度阵列。通过微流控线的缓冲液可冲走多余的细胞,并输送新鲜的营养缓冲液。密集图案的轨迹使我们能够在3CM10代以上的单个琼脂糖垫上培养并成像成千上万个细胞,从而大大提高了单细胞测量的通量。此外,我们表明图案化的琼脂糖可以促进细菌群落内的单细胞测量。作为原理的证明,我们研究了一个可以互补彼此氨基酸缺陷的大肠杆菌营养缺陷型群落。我们发现一株菌落的生长速率随着仅几细胞长度的距离与互补菌株菌落的距离而急剧下降。由于图案化的琼脂糖垫将细胞保持在可以使每个细胞成像的化学稳定环境中,因此我们将设备称为单细胞化学恒温器。对化学生长的单细胞进行高通量测量应极大地促进各种微生物行为的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号