首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals
【2h】

A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals

机译:使用光电容积描记信号进行剧烈体育活动时的鲁棒动态心率检测算法框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic accurate heart-rate (HR) estimation using a photoplethysmogram (PPG) during intense physical activities is always challenging due to corruption by motion artifacts (MAs). It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist. Different signal-processing methods are applied based on the amount of remaining PPG spectral peaks. The main MA-removal algorithm (NFEEMD) includes the repeated single-notch filter and ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets), 2.63 BPM (10 testing datasets) and 1.87 BPM (all 23 datasets), respectively. The Pearson correlation was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR estimation during continuous activities, like slow running (13 training datasets), but also for intense physical activities with acceleration, like arm exercise (10 testing datasets).
机译:由于运动伪影(MA)的损坏,在剧烈的体育活动中使用光电容积描记(PPG)进行动态准确的心率(HR)估算始终是一项挑战。很难重建干净的信号并从受污染的PPG中提取HR。本文提出了一种鲁棒的HR估计算法框架,该框架使用单通道PPG和三轴加速度数据重建PPG,并基于PPG的特征和频谱分析来计算HR。首先,通过MA的存在来判断信号。然后,当存在MA时,从PPG的周期图中过滤出对应于加速度数据的频谱峰。基于剩余PPG频谱峰值的数量,应用了不同的信号处理方法。主要的MA去除算法(NFEEMD)包括重复的单陷波滤波器和整体经验模式分解。最后,HR标定旨在确保HR跟踪的准确性。 NFEEMD算法在2015年IEEE信号处理杯数据库中的23个数据集上执行。平均估计误差分别为1.12 BPM(12个训练数据集),2.63 BPM(10个测试数据集)和1.87 BPM(所有23个数据集)。皮尔逊相关系数为0.992。实验结果表明,该算法不仅适用于慢跑等连续活动的心率估计(13个训练数据集),还适用于手臂加速等剧烈运动的身体活动(10个测试数据集)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号