首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
【2h】

Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

机译:深度卷积和LSTM递归神经网络用于多模式可穿戴活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation.
机译:传统上,人类活动识别(HAR)任务是使用启发式过程获得的工程特征来解决的。当前的研究表明,深度卷积神经网络适合于从原始传感器输入中自动提取特征。但是,人类活动是由复杂的运动序列组成的,捕获这种时间动态是成功进行HAR的基础。基于时间序列域递归神经网络的最新成功,我们提出了基于卷积和LSTM递归单元的活动识别的通用深度框架,该框架:(i)适用于多模式可穿戴传感器; (ii)可以自然地进行传感器融合; (iii)在设计特征时不需要专家知识; (iv)明确建模特征激活的时间动态。我们在两个数据集上评估了我们的框架,其中一个已用于公共活动识别挑战中。我们的结果表明,我们的框架在挑战数据集上的竞争性深层非经常性网络的平均表现为4%;胜过某些先前报告的结果最多达9%。我们的结果表明,该框架可以应用于同质传感器模式,但也可以融合多模式传感器以提高性能。我们表征关键架构超参数对性能的影响,以提供有关其优化的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号