首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments
【2h】

A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments

机译:一种用于超小吸附物质检测的自感应压电微悬臂生物传感器:理论与实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detection of ultrasmall masses such as proteins and pathogens has been made possible as a result of advancements in nanotechnology. Development of label-free and highly sensitive biosensors has enabled the transduction of molecular recognition into detectable physical quantities. Microcantilever (MC)-based systems have played a widespread role in developing such biosensors. One of the most important drawbacks of all of the available biosensors is that they all come at a very high cost. Moreover, there are certain limitations in the measurement equipments attached to the biosensors which are mostly optical measurement systems. A unique self-sensing detection technique is proposed in this paper in order to address most of the limitations of the current measurement systems. A self-sensing bridge is used to excite piezoelectric MC-based sensor functioning in dynamic mode, which simultaneously measures the system's response through the self-induced voltage generated in the piezoelectric material. As a result, the need for bulky, expensive read-out equipment is eliminated. A comprehensive mathematical model is presented for the proposed self-sensing detection platform using distributed-parameters system modeling. An adaptation strategy is then implemented in the second part in order to compensate for the time-variation of piezoelectric properties which dynamically improves the behavior of the system. Finally, results are reported from an extensive experimental investigation carried out to prove the capability of the proposed platform. Experimental results verified the proposed mathematical modeling presented in the first part of the study with accuracy of 97.48%. Implementing the adaptation strategy increased the accuracy to 99.82%. These results proved the measurement capability of the proposed self-sensing strategy. It enables development of a cost-effective, sensitive and miniaturized mass sensing platform.
机译:由于纳米技术的进步,检测蛋白质和病原体等超小质量物质成为可能。无标签和高度敏感的生物传感器的发展已使分子识别转化为可检测的物理量。基于微悬臂梁(MC)的系统在开发此类生物传感器方面发挥了广泛的作用。所有可用的生物传感器的最重要的缺点之一是它们的成本都很高。而且,附接到生物传感器的测量设备存在一定的局限,这些测量设备主要是光学测量系统。为了解决当前测量系统的大多数局限性,本文提出了一种独特的自感应检测技术。自感应桥用于激励以动态模式工作的基于压电MC的传感器,该传感器同时通过压电材料中产生的自感应电压来测量系统的响应。结果,消除了对笨重,昂贵的读出设备的需求。利用分布式参数系统建模方法,为提出的自检测平台提供了一个综合的数学模型。然后在第二部分中实施一种自适应策略,以补偿压电特性的时变,从而动态改善系统的性能。最后,从广泛的实验研究中报告了结果,以证明所提出平台的功能。实验结果验证了在研究的第一部分中提出的数学模型的准确性为97.48%。实施适应策略可将准确性提高到99.82%。这些结果证明了所提出的自感策略的测量能力。它使开发具有成本效益,灵敏且小型化的质量传感平台成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号