首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Kernel Gabor-Based Weighted Region Covariance Matrix for Face Recognition
【2h】

A Kernel Gabor-Based Weighted Region Covariance Matrix for Face Recognition

机译:基于核Gabor的加权区域协方差矩阵用于人脸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM).
机译:本文提出了一种新的用于人脸识别的图像区域描述符,即基于核Gabor的加权区域协方差矩阵(KGWRCM)。由于不同部分在表征和识别面部方面的效果不同,因此我们通过计算面部样本中每个像素的相似度来构造一个加权矩阵以强调特征。然后,我们将加权矩阵合并到区域协方差矩阵中,称为加权区域协方差矩阵(WRCM),以获取识别用的人脸识别特征。最后,为了进一步保留高维空间中的判别特征,我们开发了基于核Gabor的加权区域协方差矩阵(KGWRCM)。实验结果表明,KGWRCM优于其他算法,包括基于Gabor核的区域协方差矩阵(KGCRM)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号