首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Mass Transport Effects in Suspended Waveguide Biosensors Integrated in Microfluidic Channels
【2h】

Mass Transport Effects in Suspended Waveguide Biosensors Integrated in Microfluidic Channels

机译:集成在微流控通道中的悬浮式波导生物传感器的传质效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Label-free optical biosensors based on integrated photonic devices have demonstrated sensitive and selective detection of biological analytes. Integrating these sensor platforms into microfluidic devices reduces the required sample volume and enables rapid delivery of sample to the sensor surface, thereby improving response times. Conventionally, these devices are embedded in or adjacent to the substrate; therefore, the effective sensing area lies within the slow-flow region at the floor of the channel, reducing the efficiency of sample delivery. Recently, a suspended waveguide sensor was developed in which the device is elevated off of the substrate and the sensing region does not rest on the substrate. This geometry places the sensing region in the middle of the parabolic velocity profile, reduces the distance that a particle must travel by diffusion to be detected, and allows binding to both surfaces of the sensor. We use a finite element model to simulate advection, diffusion, and specific binding of interleukin 6, a signaling protein, to this waveguide-based biosensor at a range of elevations within a microfluidic channel. We compare the transient performance of these suspended waveguide sensors with that of traditional planar devices, studying both the detection threshold response time and the time to reach equilibrium. We also develop a theoretical framework for predicting the behavior of these suspended sensors. These simulation and theoretical results provide a roadmap for improving sensor performance and minimizing the amount of sample required to make measurements.
机译:基于集成光子设备的无标签光学生物传感器已经证明了对生物分析物的灵敏和选择性检测。将这些传感器平台集成到微流体设备中可减少所需的样品量,并能将样品快速输送到传感器表面,从而缩短响应时间。传统上,这些装置被嵌入在基板中或邻近基板。因此,有效的感应区域位于通道底部的缓慢流动区域内,从而降低了样品传输效率。近来,开发了一种悬浮的波导传感器,其中该装置从衬底上抬起,并且感测区域不停留在衬底上。这种几何形状将传感区域放置在抛物线速度分布图的中间,减少了必须通过扩散才能检测到的粒子必须行进的距离,并允许绑定到传感器的两个表面。我们使用有限元模型来模拟平流,扩散和白介素6(一种信号蛋白)与这种基于波导的生物传感器在微流体通道内的高度变化范围内的特异性结合。我们比较了这些悬挂式波导传感器和传统平面设备的瞬态性能,研究了检测阈值响应时间和达到平衡所需的时间。我们还开发了一种理论框架来预测这些悬浮传感器的行为。这些仿真和理论结果为改进传感器性能和减少测量所需的样品量提供了路线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号