首页> 美国卫生研究院文献>Science Advances >Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy
【2h】

Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy

机译:具有导致肥厚型心肌病的转化子突变的人β心肌肌球蛋白的生物物理特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin’s biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.
机译:肥厚型心肌病(HCM)会影响500个人中的1个人,是心律不齐和心力衰竭的重要原因。在临床上,HCM的特征是引起过度收缩,而治疗旨在控制过度活跃的生理机能。 β-心脏肌球蛋白中的突变约占HCM相关基因突变的40%,而肌球蛋白的转化子域是引起HCM突变的热点。然而,这些突变对肌球蛋白生物力学功能的潜在主要影响仍然难以捉摸。我们假设这些突变影响肌球蛋白的生物力学特性,例如增加其固有力和/或其占空比,从而增加肌节的集合力。使用重组人β-心脏肌球蛋白,我们表征了三种引起HCM的严重转化子结构域突变的分子效应:R719W,R723G和G741R。与我们的假设相反,与野生型相比,R719W和R723G突变型肌球蛋白的内在力降低了,而G741R则没有变化。对于R719W和R723G肌球蛋白,肌动蛋白和调节的细丝滑行速度快〜15%,而G741R的速度没有变化。所有三种突变蛋白的腺苷三磷酸酶活性和依赖于负荷的速度变化曲线与野生型非常相似。这些结果表明,携带这些转化子结构域突变的人β-心脏肌球蛋白的净生物力学特性与野生型非常相似,甚至略有收缩性,这使我们考虑了临床上观察到的过度收缩性的另一种机制。未来的工作包括这些突变如何影响肌节内的蛋白质相互作用,从而增加参与力产生的肌球蛋白头的可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号