首页> 美国卫生研究院文献>Science Advances >Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers
【2h】

Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers

机译:通过晶体学上不相称的Bi2Se3和MoS2原子层的外延堆叠获得的可调谐和可激光重构的2D杂晶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials with well-defined crystallographic order are a counterintuitive concept and, hence, fundamentally intriguing. We show that crystallographically dissimilar and incommensurate atomically thin MoS2 and Bi2Se3 layers can form rotationally aligned stacks with long-range crystallographic order. Our first-principles theoretical modeling predicts heterocrystal electronic band structures, which are quite distinct from those of the parent crystals, characterized with an indirect bandgap. Experiments reveal striking optical changes when Bi2Se3 is stacked layer by layer on monolayer MoS2, including 100% photoluminescence (PL) suppression, tunable transmittance edge (1.1→0.75 eV), suppressed Raman, and wide-band evolution of spectral transmittance. Disrupting the interface using a focused laser results in a marked the reversal of PL, Raman, and transmittance, demonstrating for the first time that in situ manipulation of interfaces can enable “reconfigurable” 2D materials. We demonstrate submicrometer resolution, “laser-drawing” and “bit-writing,” and novel laser-induced broadband light emission in these heterocrystal sheets.
机译:垂直堆叠被广泛认为是使用二维(2D)材料设计高级功能的有前途的方法。在这些2D堆栈中组合晶体学上相称的材料已显示出丰富的新电子结构,磁传输和光学特性。在这种情况下,晶体学上不相称的2D材料的垂直堆栈具有明确的晶体学顺序是违反直觉的概念,因此从根本上来说很有趣。我们显示出晶体学上不相似且不相称的原子薄的MoS2和Bi2Se3层可以形成具有长程晶体学顺序的旋转排列的堆栈。我们的第一性原理理论模型预测了杂晶电子能带结构,该结构与母体晶体的结构截然不同,其特征是间接带隙。实验揭示了Bi2Se3在单层MoS2上逐层堆叠时的惊人光学变化,包括100%的光致发光(PL)抑制,可调的透射率边缘(1.1→0.75 eV),拉曼抑制和光谱透射率的宽带演化。使用聚焦激光破坏界面会导致PL,拉曼和透射率的显着逆转,这首次证明界面的原位操作可以启用“可重构” 2D材料。我们展示了亚微米级分辨率,“激光绘图”和“位写入”,以及这些异质晶体片材中新颖的激光诱导宽带发光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号