...
首页> 外文期刊>ACS applied materials & interfaces >Oxygen-Induced In Situ Manipulation of the Interlayer Coupling and Exciton Recombination in Bi2Se3/MoS2 2D Heterostructures
【24h】

Oxygen-Induced In Situ Manipulation of the Interlayer Coupling and Exciton Recombination in Bi2Se3/MoS2 2D Heterostructures

机译:原位操纵Bi2Se3 / MOS2 2D异质结构中的中间层偶联和激子重组的原位操纵

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) heterostructures are more than a sum of the parent 2D materials, but are also a product of the interlayer coupling, which can induce new properties. In this paper, we present a method to tune the interlayer coupling in Bi2Se3/MoS2 2D heterostructures by regulating the oxygen presence in the atmosphere, while applying laser or thermal energy. Our data suggest that the interlayer coupling is tuned through the diffusive intercalation and deintercalation of oxygen molecules. When one layer of Bi2Se3 is grown on monolayer MoS2, an influential interlayer coupling is formed, which quenches the signature photoluminescence (PL) peaks. However, thermally treating in the presence of oxygen disrupts the interlayer coupling, facilitating the emergence of the MoS2 PL peak. Our density functional theory calculations predict that intercalated oxygen increases the interlayer separation similar to 17%, disrupting the interlayer coupling and inducing the layers to behave more electronically independent. The interlayer coupling can then be restored by thermally treating in N-2 or Ar, where the peaks will requench. Hence, this is an interesting oxygen-induced switching between "non-radiative" and "radiative" exciton recombination. This switching can also be accomplished locally, controllably, and reversibly using a low-power focused laser, while changing the environment from pure N-2 to air. This allows for the interlayer coupling to be precisely manipulated with submicron spatial resolution, facilitating site-programmable 2D light-emitting pixels whose emission intensity could be precisely varied by a factor exceeding 200X. Our results show that these atomically thin 2D heterostructures may be excellent candidates for oxygen sensing.
机译:二维(2D)异质结构大于母体2D材料的总和,但也是层间耦合的产物,其可以引起新的性质。在本文中,我们通过调节大气中的氧存在,同时施加激光或热能,介绍一种调节Bi2Se3 / MOS2 2D异质结构中的层间耦合的方法。我们的数据表明,通过衍射嵌入和氧分子的脱嵌进行调整中间层耦合。当在单层MOS2上生长一层BI2SE3时,形成有影响的层间耦合,这使得签名光致发光(PL)峰值淬火。然而,在氧气存在下热处理破坏了层间耦合,促进了MOS2 PL峰的出现。我们的密度函数理论计算预测,嵌入氧气增加了与17%相似的层间分离,破坏层间耦合并诱导层表现得更自由。然后可以通过在N-2或AR中进行热处理来恢复层间耦合,其中峰值将是节能的。因此,这是一种有趣的氧气诱导的“非辐射”和“辐射”激子重组之间的开关。该切换也可以在本地,可控地和可逆地使用低功率聚焦激光器,同时将环境从纯N-2改变为空气。这允许用亚微米空间分辨率精确地操纵中间层耦合,从而促进现场可编程的2D发光像素,其发射强度可以精确地变化超过200倍。我们的结果表明,这些原子薄的2D异质结构可以是氧气感应的优异候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号