首页> 美国卫生研究院文献>Royal Society Open Science >Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging
【2h】

Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging

机译:独立于培养箱的细胞培养灌注平台用于连续长期微电极阵列电生理学和延时成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes.
机译:大多数体外电生理学研究会从时间有限的代表性快照实验中提取信息并得出结论。这种方法冒着错过决定性时刻的风险,这可能会影响我们对生理事件的理解。这项可行性研究提出了一种简单的台式细胞培养灌注系统,适用于商用微电极阵列(MEA),多通道电生理设备和常见的倒置显微镜阶段,用于在环境CO2水平下同时进行和不间断的细胞外电生理学和延时成像。该概念依赖于透明的,复制品浇铸的聚二甲基硅氧烷灌注帽,重力或注射器泵驱动的灌注以及在生理温度下将pH缓冲的无血清细胞培养基预处理至环境CO2浓度的条件。低成本的微流体体外促成平台,使我们能够在细胞铺板后立即对培养物进行成像,易于复制,并适用于不同细胞培养容器的几何形状。它允许连续和同时进行多模式长期光学或电生理参数集的采集或操作,从而大大拓宽了实验可能性的范围。关于海马网络的两个示例性概念验证长期MEA研究说明了系统性能。长达70天的连续细胞外记录揭示了日间波动较大的成熟细胞集合中神经活动突然和逐渐变化的详细信息。相关的延时成像技术揭示了相当静态的宏观网络体系结构,该体系结构在几分钟的时间尺度上具有以前未报告的局部形态振荡。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号