首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design
【2h】

Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

机译:疏水和静电残基对SARS冠状病毒S2蛋白稳定性的影响:对一般病毒融合和抑制剂设计的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.
机译:严重急性呼吸系统综合症(SARS)是由SARS冠状病毒(SARS-CoV)引起的急性呼吸系统疾病。尖峰蛋白(S)促进了SARS-CoV的进入,该蛋白由负责细胞附着的N末端结构域(S1)和介导病毒与宿主细胞膜融合的C末端结构域(S2)组成。 SARS-CoV S2是潜在的药物靶标,因为针对S2的拟肽可作为有效的融合抑制剂。在这项研究中,进行了针对静电,疏水和极性残基的定点诱变和热稳定性实验,以剖析它们在稳定S2融合构象中的作用。结果表明,与非pH依赖型逆转录病毒融合蛋白不同,SARS-CoV S2在很宽的pH范围内都是稳定的,支持其在质膜和内体融合的能力。全面的SARS-CoV S2分析表明,HR2 C末端的特定疏水位置(而不是静电)对于融合蛋白稳定至关重要。保守的C端疏水残基的破坏使融合核不稳定,并使熔化温度降低了30℃。 C-末端疏水残基的重要性使我们确定了中央核上的42个残基亚结构,该结构在所有现有的CoV S2融合蛋白中均是结构保守的(均方根偏差= 0.4Å)。这是首次鉴定这种保守亚结构的研究,可能代表促进病毒融合的共同基础。我们已经讨论了关键残基在融合抑制剂设计中的作用以及亚结构作为开发针对CoV感染的新型疗法的一般目标的潜在可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号