首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins
【2h】

Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins

机译:第一个融合中间体的热力学可逆路径揭示了融合蛋白膜锚的重要作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological membrane fusion proceeds via an essential topological transition of the two membranes involved. Known players such as certain lipid species and fusion proteins are generally believed to alter the free energy and thus the rate of the fusion reaction. Quantifying these effects by theory poses a major challenge since the essential reaction intermediates are collective, diffusive and of a molecular length scale. We conducted molecular dynamics simulations in conjunction with a state-of-the-art string method to resolve the minimum free-energy path of the first fusion intermediate state, the so-called stalk. We demonstrate that the isolated transmembrane domains (TMDs) of fusion proteins such as SNARE molecules drastically lower the free energy of both the stalk barrier and metastable stalk, which is not trivially explained by molecular shape arguments. We relate this effect to the local thinning of the membrane (negative hydrophobic mismatch) imposed by the TMDs which favors the nearby presence of the highly bent stalk structure or prestalk dimple. The distance between the membranes is the most crucial determinant of the free energy of the stalk, whereas the free-energy barrier changes only slightly. Surprisingly, fusion enhancing lipids, i.e., lipids with a negative spontaneous curvature, such as PE lipids have little effect on the free energy of the stalk barrier, likely because of its single molecular nature. In contrast, the lipid shape plays a crucial role in overcoming the hydration repulsion between two membranes and thus rather lowers the total work required to form a stalk.
机译:生物膜融合通过所涉及的两个膜的基本拓扑转变而进行。通常认为诸如某些脂质种类和融合蛋白之类的已知作用因子会改变自由能,从而改变融合反应的速率。由于必需的反应中间体是集体的,扩散性的并且具有分子长度尺度,因此通过理论对这些作用进行量化提出了重大挑战。我们结合最新的弦方法进行了分子动力学模拟,以解决第一个融合中间状态(即所谓的茎)的最小自由能路径。我们证明,诸如SNARE分子的融合蛋白的分离跨膜域(TMDs)大大降低了茎屏障和亚稳茎的自由能,这在分子形状论据中并没有得到简单解释。我们将此效应与TMD造成的膜局部变薄(负疏水失配)有关,这有利于附近存在高度弯曲的茎杆结构或茎杆前凹窝。膜之间的距离是茎的自由能的最关键的决定因素,而自由能势垒仅发生微小变化。令人惊讶地,融合增强脂质,即具有负自发曲率的脂质,例如PE脂质,对茎杆屏障的自由能几乎没有影响,这可能是由于其单分子性质。相反,脂质形状在克服两个膜之间的水合排斥作用中起着至关重要的作用,因此降低了形成茎所需的总功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号