首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli
【2h】

Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli

机译:分层动态调节可提高大肠杆菌的代谢途径生产力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial production of value-added chemicals from biomass is a sustainable alternative to chemical synthesis. To improve product titer, yield, and selectivity, the pathways engineered into microbes must be optimized. One strategy for optimization is dynamic pathway regulation, which modulates expression of pathway-relevant enzymes over the course of fermentation. Metabolic engineers have used dynamic regulation to redirect endogenous flux toward product formation, balance the production and consumption rates of key intermediates, and suppress production of toxic intermediates until later in the fermentation. Most cases, however, have utilized a single strategy for dynamically regulating pathway fluxes. Here we layer two orthogonal, autonomous, and tunable dynamic regulation strategies to independently modulate expression of two different enzymes to improve production of D-glucaric acid from a heterologous pathway. The first strategy uses a previously described pathway-independent quorum sensing system to dynamically knock down glycolytic flux and redirect carbon into production of glucaric acid, thereby switching cells from “growth” to “production” mode. The second strategy, developed in this work, uses a biosensor for myo-inositol (MI), an intermediate in the glucaric acid production pathway, to induce expression of a downstream enzyme upon sufficient buildup of MI. The latter, pathway-dependent strategy leads to a 2.5-fold increase in titer when used in isolation and a fourfold increase when added to a strain employing the former, pathway-independent regulatory system. The dual-regulation strain produces nearly 2 g/L glucaric acid, representing the highest glucaric acid titer reported to date in Escherichia coli K-12 strains.
机译:由生物质微生物生产增值化学品是化学合成的可持续替代方案。为了提高产品的效价,产量和选择性,必须优化进入微生物的途径。优化的一种策略是动态途径调节,其在发酵过程中调节途径相关酶的表达。代谢工程师使用动态调节将内源性通量重定向到产品形成,平衡关键中间体的生产和消耗速率以及抑制有毒中间体的产生直至发酵后期。但是,大多数情况下,已采用一种策略来动态调节路径通量。在这里,我们分层两个正交,自治和可调动态调节策略,以独立地调节两种不同酶的表达,以提高从异源途径产生D-葡萄糖酸的产量。第一种策略使用先前描述的独立于途径的群体感应系统来动态降低糖酵解通量并使碳重新定向为葡糖二酸的产生,从而将细胞从“生长”模式切换为“生产”模式。在这项工作中开发的第二种策略是使用生物传感器肌醇(MI)(葡糖二酸生产途径中的一种中间体)在MI充分积累时诱导下游酶的表达。后者的途径依赖性策略在单独使用时导致滴度增加2.5倍,而在加入前者的途径依赖性调节系统的菌株中时,滴度增加4倍。双重调控菌株产生近2 g / L的葡糖二酸,代表了迄今为止报道的大肠杆菌K-12菌株中最高的葡糖二酸效价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号