首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Recurrent symbiont recruitment from fungal parasites in cicadas
【2h】

PNAS Plus: Recurrent symbiont recruitment from fungal parasites in cicadas

机译:PNAS Plus:蝉蝉从真菌寄生虫中反复吸收共生菌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our inspection of 24 Japanese cicada species revealed that while all species possessed Sulcia, only nine species retained Hodgkinia, and their genomes exhibited substantial structural instability. The remaining 15 species lacked Hodgkinia and instead harbored yeast-like fungal symbionts. Detailed phylogenetic analyses uncovered repeated Hodgkinia-fungus and fungus-fungus replacements in cicadas. The fungal symbionts were phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, identifying entomopathogenic origins of the fungal symbionts. Most fungal symbionts of cicadas were uncultivable, but the fungal symbiont of Meimuna opalifera was cultivable, possibly because it is at an early stage of fungal symbiont replacement. Genome sequencing of the fungal symbiont revealed its metabolic versatility, presumably capable of synthesizing almost all amino acids, vitamins, and other metabolites, which is more than sufficient to compensate for the Hodgkinia loss. These findings highlight a straightforward ecological and evolutionary connection between parasitism and symbiosis, which may provide an evolutionary trajectory to renovate deteriorated ancient symbiosis via pathogen domestication.
机译:多样的昆虫与古老的细菌共生体有关,它们的基因组经常遭受急剧的减少和变性。在极端情况下,这样的共生基因组似乎几乎无法维持基本的细胞功能,这是共生进化中一个悬而未决的问题。在这里,我们报告一个昆虫群,其中遭受大规模基因组侵蚀的古代共生谱系经历了反复灭绝并被宿主相关的病原微生物所取代。蝉与古老的细菌共专性共生体Sulcia和Hodgkinia有关,后者的简化基因组专门用于合成必需氨基酸,从而使宿主能够生活在植物汁液中。但是,我们对24种日本蝉物种的检查表明,尽管所有物种都具有Sulcia,但只有9种物种保留了霍奇金菌,并且其基因组显示出明显的结构不稳定。其余的15种缺乏霍奇金菌,而是带有酵母样真菌共生体。详细的系统发育分析发现蝉中反复出现的霍奇金菌-真菌和真菌-真菌替代物。真菌共生体与蝉寄生的麦冬皮囊菌在系统发育上混杂在一起,从而确定了真菌共生体的致病性起源。蝉的大多数真菌共生菌是不可培养的,但是不透明Meimuna opalifera的真菌共生菌是可培养的,可能是因为它处于真菌共生菌替代的早期。真菌共生体的基因组测序显示出其代谢的多功能性,据推测能够合成几乎所有的氨基酸,维生素和其他代谢物,足以弥补霍奇金氏病的损失。这些发现突显了寄生和共生之间直接的生态和进化联系,这可能提供一条进化轨迹,通过病原体驯化来修复恶化的古代共生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号