首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii
【2h】

PNAS Plus: Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii

机译:PNAS Plus:对来自弓形虫的非常规类XIV肌球蛋白MyoA功能的结构和机理的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining “HYAG”-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen–deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure–function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.
机译:在全球范围内,蚜虫门的寄生虫导致大量的发病和死亡。这些病原体的毒性的核心是特定于门的非常规XIV类肌球蛋白,它为寄生虫运动和宿主细胞入侵的基本过程提供了动力。值得注意的是,XIV类肌球蛋白在关键功能区域与人肌球蛋白不同,但它们能够沿着肌动蛋白丝快速运动,其动力学可与先前研究的肌球蛋白相媲美。为了建立第十四类运动的详细分子机制,我们确定了弓形虫MyoA(TgMyoA)电机域的2.6-Å分辨率晶体结构。结构分析揭示了力传导和化学机械耦合的有趣策略,这些策略依赖于不同的SH1 / SH2区,类定义的“ HYAG”位点多态性和肌动蛋白结合表面。体外运动测定和氢-氘交换与质谱联用进一步揭示了TgMyoA运动磷酸化依赖性调节的机制基础,由此增加的稳定性和顺序的局部区域与运动性增强相关。对溶剂可及口袋的分析显示,apicomplexan XIV类和人肌球蛋白之间存在显着差异。将这些分析扩展到疟原虫和隐孢子虫MyoA运动域的高可信性同源性模型中,支持设计类特异性但活性广泛的apicomplexan肌球蛋白抑制剂的潜在潜力。功能性TgMyoA复合物的成功表达与我们运动域的晶体结构相结合,为支持详细的结构-功能研究奠定了坚实的基础,并使得针对这些破坏性全球病原体的小分子抑制剂的开发成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号