首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Distinguishing attosecond electron–electron scattering and screening in transition metals
【2h】

PNAS Plus: Distinguishing attosecond electron–electron scattering and screening in transition metals

机译:PNAS Plus:区分过渡金属中的亚秒电子-电子散射和屏蔽

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electron–electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron–electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by ∼100 as compared with those from the same band of Ni. We attribute this to the enhanced electron–electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron–electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (≈20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron–electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.
机译:电子-电子相互作用是材料中最快的过程,其发生时间在飞秒到十亿分之一秒之间,具体取决于材料的电子能带结构和激发能。此类相互作用在光诱导过程(例如纳米增强的等离激元和催化,光收集或相变)中起主要作用。然而,迄今为止,尚不可能通过实验区分基本的电子相互作用,例如散射和筛选。在这里,我们使用阿秒脉冲序列直接测量具有简单和复杂费米表面的不同材料的不同谱带中的电子-电子相互作用。通过提取与光发射相关的时间延迟,我们表明,与相同的Ni带相比,来自d带的Cu的光电子的寿命要长100倍左右。我们将其归因于Ni的未填充d带中增强的电子-电子散射。使用理论模型,我们可以提取具有简单和复杂费米表面的不同材料的不同带中电子-电子散射和屏蔽的贡献。我们的结果还表明,屏蔽对高能光电子(≈20eV)的影响明显小于低能光电子。结果,通过忽略筛选,高能光电子可以作为自旋相关电子-电子散射的直接探针。然后可以将其用于量化电子相互作用的贡献,并筛选对费米能级附近的低能激发。此处得出的信息为大量量子材料提供了宝贵而独特的信息。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号