首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins
【2h】

Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins

机译:设计改进的光诱导二聚体(iLID)以控制信号蛋白的定位和活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discovery of light-inducible protein–protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.
机译:光诱导蛋白与蛋白相互作用的发现使得可以对各种生物过程进行时空控制。为了有效,光二聚体应具有几个特征:在光刺激下它应显示出很大的结合亲和力变化,它不应与细胞中的其他分子发生交叉反应,并且应易于在多种生物中使用来吸收彼此感兴趣的蛋白质。为了创建满足这些条件的开关,我们将细菌SsrA肽嵌入了天然存在的光开关的C末端螺旋中,该光开关是Avena sativa的轻氧电压2(LOV2)域。在黑暗中,SsrA肽在空间上无法与其天然结合伴侣SspB结合。当被蓝光激活时,LOV2结构域的C末端螺旋从蛋白质上消失,从而使SsrA肽结合SspB。如果不进行优化,该开关在光刺激下对SspB的结合亲和力会发生两倍变化。在这里,我们描述了使用计算蛋白设计,噬菌体展示和高通量结合测定法来创建改良的光诱导二聚体(iLID),该光诱导二聚体通过光刺激将其对SspB的亲和力改变了50倍以上。 iLID的晶体结构显示了LOV2结构域的表面与苯丙氨酸之间的关键相互作用,该苯丙氨酸被设计为在黑暗中更紧密地将SsrA肽固定在LOV2结构域上。我们通过哺乳动物细胞培养中的光介导的亚细胞定位和小的GTPase信号的可逆控制证明了开关的功能实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号