首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo
【2h】

Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo

机译:通过体内非侵入性技术揭示了莱茵衣藻状态转换过程中的叶绿体重塑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼20%) is not commensurate to the decrease in PSII antenna size (∼70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences.
机译:植物通过调节光系统的吸收能力来应对光质量的变化。这些短期适应措施使用光捕获复合物(LHCII)的氧化还原控制的可逆磷酸化来调节两个光系统(PS)的相对吸收截面,通常称为状态转换。公认的是,状态转换会引起PS的实质性重组。但是,它们对叶绿体结构的影响更具争议性。在这里,我们调查状态转换如何影响莱茵衣藻的活细胞使用互补方法的叶绿体结构和功能。利用小角中子散射,我们发现状态1中类囊体的周期很强,特征重复距离约为200Å,在状态2中几乎完全消失。如圆二色性所揭示,类囊体周期的变化是平行的通过修改光合配合物的长距离排列,与状态1相比,状态2减少了约20%,但并未取消。此外,吸收光谱法表明,从状态1到状态2过渡期间PSI天线尺寸的增大(约20%)与PSII天线尺寸的减小(约70%)不相称,从而导致很大一部分PSI天线尺寸减小。磷酸化的LHCII不与PSI结合,而是形成能量猝灭的复合物,该复合物显示与PSII超复合物相关或呈游离形式。总的来说,这些非侵入性体内方法使我们能够提供一种更可能的状态转换方案,以解释其分子机制和生理后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号