首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways
【2h】

Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways

机译:通过工程化的模块化代谢途径控制奇数链燃料和化学物质的生物合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial systems are being increasingly developed as production hosts for a wide variety of chemical compounds. Broader adoption of microbial synthesis is hampered by a limited number of high-yielding natural pathways for molecules with the desired physical properties, as well as the difficulty in functionally assembling complex biosynthetic pathways in heterologous hosts. Here, we address both of these challenges by reporting the adaptation of the butanol biosynthetic pathway for the synthesis of odd-chain molecules and the development of a complementary modular toolkit to facilitate pathway construction, characterization, and optimization in engineered Escherichia coli. The modular feature of our pathway enables multientry and multiexit biosynthesis of various odd-chain compounds at high efficiency. By varying combinations of the pathway and toolkit enzymes, we demonstrate controlled production of propionate, trans-2-pentenoate, valerate, and pentanol, compounds with applications that include biofuels, antibiotics, biopolymers, and aroma chemicals. Importantly, and in contrast to a previously used method to identify limitations in heterologous amorphadiene production, our bypass strategy was effective even without the presence of freely membrane-diffusible substrates. This approach should prove useful for optimization of other pathways that use CoA-derivatized intermediates, including fatty acid β-oxidation and the mevalonate pathway for isoprenoid synthesis.
机译:微生物系统正日益发展成为各种化合物的生产宿主。有限数量的具有所需物理性质的分子的高产天然途径,以及在异源宿主中功能性组装复杂生物合成途径的困难,阻碍了微生物合成的广泛采用。在这里,我们通过报道丁醇生物合成途径对奇数链分子的合成的适应性和互补模块工具包的开发以解决工程化大肠杆菌中途径的构建,表征和优化问题,来应对这两个挑战。我们途径的模块化特征使各种奇数链化合物的多入口和多出口生物合成得以高效进行。通过改变途径和工具包酶的组合,我们证明了丙酸酯,反-2-戊烯酸酯,戊酸酯和戊醇的受控生产,这些化合物的应用包括生物燃料,抗生素,生物聚合物和芳香化学物质。重要的是,与以前使用的识别异源amorphadiene生产中的局限性的方法相反,即使没有自由的膜可扩散底物,我们的旁路策略也有效。这种方法对于优化使用CoA衍生化中间体的其他途径(包括脂肪酸β-氧化和类戊二烯合成的甲羟戊酸途径)的优化应该是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号