首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography
【2h】

Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography

机译:通过100 ps时间分辨的Laue晶体学实时观察信号蛋白的功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To understand how signaling proteins function, it is crucial to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotated nearly 90° out of the plane of the phenolate. A hydrogen bond between the pCA carbonyl and the Cys69 backbone constrains the chromophore in this unusual twisted conformation. Density functional theory calculations confirm that this structure is chemically plausible and corresponds to a strained cis intermediate. This unique structure is short-lived (∼600 ps), has not been observed in prior cryocrystallography experiments, and is the progenitor of intermediates characterized in previous nanosecond time-resolved Laue crystallography studies. The structural transitions unveiled during the PYP photocycle include trans/cis isomerization, the breaking and making of hydrogen bonds, formation/relaxation of strain, and gated water penetration into the interior of the protein. This mechanistically detailed, near-atomic resolution description of the complete PYP photocycle provides a framework for understanding signal transduction in proteins, and for assessing and validating theoretical/computational approaches in protein biophysics.
机译:要了解信号蛋白的功能,了解导致信号状态的事件的时间顺序至关重要。我们最近在Advanced Photon Source的BioCARS 14-IDB光束线上开发了以接近原子的空间分辨率和150 ps的时间分辨率表征蛋白质晶体结构变化所需的基础架构,并已使用此功能来跟踪光活性物质的可逆光周期黄色蛋白(PYP),其对香豆酸(pCA)生色团进行反式-顺式光异构化后,历时10年以上。本研究中表征的四个主要中间体中的第一个是高度扭曲的,pCA羰基从酚盐的平面旋转了近90°。 pCA羰基和Cys69骨架之间的氢键将发色团约束在这种异常的扭曲构象中。密度泛函理论计算证实该结构在化学上是合理的,并且对应于应变的顺式中间体。这种独特的结构寿命短(约600 ps),在以前的低温晶体学实验中没有观察到,并且是先前纳秒级时间分辨Laue晶体学研究所表征的中间体的祖先。 PYP光周期期间揭示的结构转变包括反式/顺式异构化,氢键的断裂和形成,菌株的形成/松弛以及门控水渗透到蛋白质内部。完整的PYP光周期的这种机械详细的近原子分辨率描述为理解蛋白质中的信号转导以及评估和验证蛋白质生物物理学中的理论/计算方法提供了一个框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号