首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >High performance shape memory polymer networks based on rigid nanoparticle cores
【2h】

High performance shape memory polymer networks based on rigid nanoparticle cores

机译:基于刚性纳米颗粒核的高性能形状记忆聚合物网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications.
机译:可以响应外部刺激的智能材料在生物医学领域受到广泛关注。热响应形状记忆聚合物是一类智能材料,可以固定在其转变温度(Ttrans)以下的临时形状,并通过热触发按需恢复其原始形状,具有作为微创自适应组织支架或微创材料的巨大潜力。植入物。聚合物形状记忆行为的内在机理是分别冻结和激活低于和高于Ttrans的聚合物链段的远距离运动。 Ttrans和聚合物链参与有效弹性变形和恢复的程度都由网络组成和结构决定,网络组成和结构也决定了它们的机械性能,可降解性和生物活性。这种复杂性使得实现略高于生理温度的Ttrans,快速而完全的恢复以及适合临床应用的合适机械和生物学特性的理想组合变得极具挑战性。在这里,我们报告的形状记忆聚合物网络由功能化的八个聚酯臂的多面体低聚倍半硅氧烷纳米粒子核心构成。包含该大分子单体的交联网络在体温下具有千兆帕斯卡的储能模量,其Ttrans在42至48°C之间。这些材料在室温下可以稳定地保持其临时形状> 1年,并在几秒钟内达到≤51°C的完全形状恢复率。它们的通用结构可实现可调节的生物降解性和生物功能性。这些材料在组织工程应用中具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号