首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Acoustically driven programmable liquid motion using resonance cavities
【2h】

Acoustically driven programmable liquid motion using resonance cavities

机译:使用共振腔的声学驱动可编程液体运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Performance and utility of microfluidic systems are often overshadowed by the difficulties and costs associated with operation and control. As a step toward the development of a more efficient platform for microfluidic control, we present a distributed pressure generation scheme whereby independently tunable pressure sources can be simultaneously controlled by using a single acoustic source. We demonstrate how this scheme can be used to perform precise droplet positioning as well as merging, splitting, and sorting within open microfluidic networks. We further show how this scheme can be implemented for control of continuous-flow systems, specifically for generation of acoustically tunable liquid gradients. Device operation hinges on a resonance-decoding and rectification mechanism by which the frequency content in a composite acoustic input is decomposed into multiple independently buffered output pressures. The device consists of a bank of 4 uniquely tuned resonance cavities (404, 484, 532, and 654 Hz), each being responsible for the actuation of a single droplet, 4 identical flow-rectification structures, and a single acoustic source. Cavities selectively amplify resonant tones in the input signal, resulting in highly elevated local cavity pressures. Fluidic-rectification structures then serve to convert the elevated oscillating cavity pressures into unidirectional flows. The resulting pressure gradients, which are used to manipulate fluids in a microdevice, are tunable over a range of ≈0–200 Pa with a control resolution of 10 Pa.
机译:微流体系统的性能和实用性常常被与操作和控制相关的困难和成本所掩盖。作为开发用于微流体控制的更高效平台的一步,我们提出了一种分布式压力生成方案,通过该方案,可以通过使用单个声源同时控制独立可调的压力源。我们演示了如何使用此方案在开放的微流体网络中执行精确的液滴定位以及合并,拆分和排序。我们进一步展示了该方案如何实现用于连续流系统的控制,特别是用于声学可调液体梯度的生成。设备操作取决于共振解码和整流机制,通过该机制,复合声学输入中的频率成分将分解为多个独立缓冲的输出压力。该设备由4个独特调谐的谐振腔(404、484、532和654 Hz)组成,每个谐振腔负责单个液滴的驱动,4个相同的整流结构和单个声源。空腔选择性地放大输入信号中的谐振音,从而导致局部空腔压力大大升高。然后,流体精馏结构用于将升高的振荡腔压力转换成单向流。所产生的压力梯度可用于在微型设备中处理流体,并且可在≈0–200 Pa的范围内以10 Pa的控制分辨率进行调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号