首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Picosecond fluctuating protein energy landscape mapped by pressure–temperature molecular dynamics simulation
【2h】

Picosecond fluctuating protein energy landscape mapped by pressure–temperature molecular dynamics simulation

机译:通过压力-温度分子动力学模拟绘制皮秒波动的蛋白质能量能图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microscopic statistical pressure fluctuations can, in principle, lead to corresponding fluctuations in the shape of a protein energy landscape. To examine this, nanosecond molecular dynamics simulations of lysozyme are performed covering a range of temperatures and pressures. The well known dynamical transition with temperature is found to be pressure-independent, indicating that the effective energy barriers separating conformational substates are not significantly influenced by pressure. In contrast, vibrations within substates stiffen with pressure, due to increased curvature of the local harmonic potential in which the atoms vibrate. The application of pressure is also shown to selectively increase the damping of the anharmonic, low-frequency collective modes in the protein, leaving the more local modes relatively unaffected. The critical damping frequency, i.e., the frequency at which energy is most efficiently dissipated, increases linearly with pressure. The results suggest that an invariant description of protein energy landscapes should be subsumed by a fluctuating picture and that this may have repercussions in, for example, mechanisms of energy dissipation accompanying functional, structural, and chemical relaxation.
机译:微观上的统计压力波动原则上可以导致蛋白质能量分布图的形状发生相应的波动。为了检验这一点,进行了溶菌酶的纳秒分子动力学模拟,涵盖了一系列温度和压力。发现众所周知的随温度的动态转变与压力无关,这表明分离构象亚状态的有效能垒不受压力的显着影响。相反,由于原子在其中振动的局部谐波势的曲率增加,子状态内的振动随压力而变大。还显示了施加压力可选择性地增加蛋白质中非谐波低频集体模式的阻尼,而相对不影响更多局部模式。临界阻尼频率,即能量最有效耗散的频率,随压力线性增加。结果表明,对蛋白质能量态势的不变描述应包含波动的图像,并且这可能会对例如伴随功能,结构和化学松弛的能量耗散机制产生影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号