【2h】

From the Cover: Modularity and community structure in networks

机译:从封面开始:网络中的模块化和社区结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.
机译:人们发现许多与科学有关的网络,包括社交网络,计算机网络以及新陈代谢和监管网络,可以自然地分为社区或模块。检测和表征此社区结构的问题是网络系统研究中的突出问题之一。一种高效的方法是在网络的可能划分上优化称为“模块化”的质量函数。在这里,我证明了可以通过网络的特征矩阵的特征向量来表达模块化,我称其为模块化矩阵,并且这种表达导致了一种用于社区检测的光谱算法,该算法返回的质量明显好于竞争算法。运行时间更短的方法。我将说明如何将该方法应用于多个已发布的网络数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号