【2h】

Simple models for reading neuronal population codes.

机译:读取神经元人口代码的简单模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models.
机译:在许多神经系统中,感觉信息分布在整个神经元群体中。我们研究了用于提取此信息的简单神经网络模型。网络的输入是调整为定向刺激的感觉神经元群体的随机响应。将每个网络模型在心理物理任务中的性能与最佳最大似然过程的性能进行比较。作为二维方向估计的模型,我们考虑一个计算种群矢量的线性网络。其性能取决于总体调整曲线的宽度,并且对于宽度而言是最大的,该宽度随背景活动的水平而增加。尽管对于微调的神经元,种群向量的性能明显不如最大似然估计,但当调整范围很广时,两者之间的差异很小。对于方向辨别,我们考虑两个模型:具有完全自适应权重的感知器和通过向人口矢量网络添加自适应第二层而形成的网络。经过详尽的特定方向训练后,我们计算这些网络的错误率。通过在所有可能的方向上进行测试,可以计算出训练向新刺激传递的程度。发现对于阈值线性网络,知觉学习的传递是非单调的。尽管远离训练刺激,性能会下降,但它会以中间角度再次达到峰值。这种非单调性为这些模型提供了重要的心理物理测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号