首页> 美国卫生研究院文献>Polymers >On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers
【2h】

On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers

机译:超交联聚合物衍生的3D多孔碳的储气特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.
机译:描述了通过超交联聚合物的后合成处理制备多孔碳,并经过仔细的物理化学表征,以获得用于气体存储和分离的新材料。考虑基于化学和热活化的不同程序;其中包括在380°C下进行热处理,以及用KOH进行化学活化,然后在750或800°C下进行热处理;所得到的材料在结构和质地特性上都经过仔细表征。在低于分解温度(380°C)的温度下进行的热处理可保持聚合物的结构,除去残留在孔中的聚合副产物,并改善织构性质。另一方面,碳化会产生不同的材料,从而增加表面积和总孔体积-最终多孔碳的质构性质会受到活化程序和起始聚合物的影响。不同的化学活化方法和温度会产生不同的碳,BET表面积在2318和2975 m 2 / g之间,孔体积最大为1.30 cc / g。碳化处理的明智选择可以通过增加狭窄的孔隙率或微孔和中孔的体积来微调最终的质地。研究了最有前途的材料对甲烷,氢气和二氧化碳的高压气体吸附测量,并测量和讨论了甲烷的存储容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号