首页> 美国卫生研究院文献>Polymers >Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions
【2h】

Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions

机译:基于壳聚糖溶液温度诱导降解动力学数值模拟的MHS粘度常数校正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Mark–Houwink–Sakurada (MHS) equation allows for estimation of rheological properties, if the molecular weight is known along with good understanding of the polymer conformation. The intrinsic viscosity of a polymer solution is related to the polymer molecular weight according to the MHS equation, where the value of the constants is related to the specific solvent and its concentration. However, MHS constants do not account for other characteristics of the polymeric solutions, i.e., Deacetilation Degree (DD) when the solute is chitosan. In this paper, the degradation of chitosan in different acidic environments by thermal treatment is addressed. In particular, two different solutions are investigated (used as solvent acetic or hydrochloric acid) with different concentrations used for the preparation of chitosan solutions. The samples were treated at different temperatures (4, 30, and 80 °C) and time points (3, 6 and 24 h). Rheological, Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyses (TGA) were performed in order to assess the degradation rate of the polymer backbones. Measured values of molecular weight have been integrated in the simulation of the batch degradation of chitosan solutions for evaluating MHS coefficients to be compared with their corresponding experimental values. Evaluating the relationship between the different parameters used in the preparation of chitosan solutions (e.g., temperature, time, acid type and concentration), and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination. Therefore, the goal of the present work is to propose an integration of MHS coefficients for chitosan solutions that contemplate a deacetylation degree for chitosan systems or a more general substitution degree for polymers in which viscosity depends not only on molecular weight and solvent combinations.
机译:如果已知分子量,并且对聚合物的构型有很好的了解,则Mark-Houwink-Sakurada(MHS)方程可以估算流变性质。根据MHS方程,聚合物溶液的特性粘度与聚合物分子量有关,其中常数的值与特定溶剂及其浓度有关。然而,当溶质是壳聚糖时,MHS常数不能解释聚合物溶液的其他特性,即脱乙度(DD)。在本文中,解决了在不同酸性环境中通过热处理降解壳聚糖的问题。特别地,研究了两种不同溶液(用作溶剂乙酸或盐酸),它们的浓度不同,用于制备壳聚糖溶液。在不同的温度(4、30和80°C)和时间点(3、6和24 h)处理样品。为了评估聚合物骨架的降解率,进行了流变学,凝胶渗透色谱法(GPC),傅立叶变换红外光谱(FT-IR),差示扫描量热法(DSC)和热重分析(TGA)。分子量的测量值已集成到壳聚糖溶液批量降解的模拟中,以评估MHS系数,并将其与相应的实验值进行比较。评估制备壳聚糖溶液中使用的不同参数(例如温度,时间,酸类型和浓度)之间的关系及其对壳聚糖骨架降解的影响,重要的是要有一个数学框架来解释现象超出了溶剂-溶质结合的聚合物降解。因此,本发明的目的是提出壳聚糖溶液的MHS系数的积分,其考虑了壳聚糖体系的脱乙酰度或对于聚合物的更普遍的取代度,其中粘度不仅取决于分子量和溶剂组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号