首页> 美国卫生研究院文献>PLoS Genetics >The Thermoanaerobacter Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
【2h】

The Thermoanaerobacter Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria

机译:嗜热厌氧菌糖组学揭示了细菌中戊糖和己糖共同利用的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoanaerobic bacteria are of interest in cellulosic-biofuel production, due to their simultaneous pentose and hexose utilization (co-utilization) and thermophilic nature. In this study, we experimentally reconstructed the structure and dynamics of the first genome-wide carbon utilization network of thermoanaerobes. The network uncovers numerous novel pathways and identifies previously unrecognized but crucial pathway interactions and the associated key junctions. First, glucose, xylose, fructose, and cellobiose catabolism are each featured in distinct functional modules; the transport systems of hexose and pentose are apparently both regulated by transcriptional antiterminators of the BglG family, which is consistent with pentose and hexose co-utilization. Second, glucose and xylose modules cooperate in that the activity of the former promotes the activity of the latter via activating xylose transport and catabolism, while xylose delays cell lysis by sustaining coenzyme and ion metabolism. Third, the vitamin B12 pathway appears to promote ethanologenesis through ethanolamine and 1, 2-propanediol, while the arginine deiminase pathway probably contributes to cell survival in stationary phase. Moreover, by experimentally validating the distinct yet collaborative nature of glucose and xylose catabolism, we demonstrated that these novel network-derived features can be rationally exploited for product-yield enhancement via optimized timing and balanced loading of the carbon supply in a substrate-specific manner. Thus, this thermoanaerobic glycobiome reveals novel genetic features in carbon catabolism that may have immediate industrial implications and provides novel strategies and targets for fermentation and genome engineering.
机译:由于厌氧细菌同时具有戊糖和己糖利用(共同利用)和嗜热特性,因此它们在纤维素生物燃料生产中引起人们的兴趣。在这项研究中,我们通过实验重构了第一个全基因组热厌氧菌碳利用网络的结构和动力学。该网络发现了许多新颖的途径,并确定了先前无法识别但至关重要的途径相互作用以及相关的关键联系。首先,葡萄糖,木糖,果糖和纤维二糖分解代谢分别具有不同的功能模块。己糖和戊糖的转运系统显然都受到BglG家族的转录抗终止剂的调控,这与戊糖和己糖的共同利用相一致。其次,葡萄糖和木糖模块之间的协作是因为前者的活性通过激活木糖转运和分解代谢而促进了后者的活性,而木糖则通过维持辅酶和离子代谢来延迟细胞裂解。第三,维生素B12途径似乎通过乙醇胺和1,2-丙二醇促进乙醇生成,而精氨酸脱亚氨酶途径可能有助于固定期的细胞存活。此外,通过实验验证葡萄糖和木糖分解代谢的独特但协同的性质,我们证明了这些新颖的网络衍生功能可通过优化的时间安排和平衡的碳供应量(以底物特定的方式)合理地用于产品产量的提高。因此,这种热厌氧糖组学揭示了碳分解代谢中可能具有直接工业意义的新遗传特征,并为发酵和基因组工程提供了新的策略和靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号