首页> 外文学位 >Regulation of hexose and pentose metabolism by Escherichia coli.
【24h】

Regulation of hexose and pentose metabolism by Escherichia coli.

机译:大肠杆菌对己糖和戊糖代谢的调节。

获取原文
获取原文并翻译 | 示例

摘要

Microorganisms can be used to produce a variety of chemicals such as drugs, enzymes, and fuels from different sugars. Traditionally, these processes have involved a single feedstock, most often glucose. More recently, significant effort has been devoted towards developing processes that directly use plant-based material as the feedstock. One challenge presented by the use of plant-based material is it is comprised of multiple sugars, each with a unique biochemistry. In particular, can these microorganisms process mixtures of sugars and, if not, is it possible to engineer them so that they can efficiently complete this task?;In this work, I investigate how Escherichia coli ( E. coli), a common industrial microorganism, uptakes and then metabolizes mixtures of hexose and pentose sugars, the main constituents in plant-based material. My specific focus was on understanding how the biochemical pathways for processing pentose sugars, such as arabinose and xylose, are regulated. In particular, E. coli will only activate a specific pathway if the target sugar is present. Furthermore, different pathways can interfere with one another in such a way that the processing of one sugar prevents that of another.;Using both genetic and analytical approaches, I discovered that E. coli will not simultaneously metabolize mixtures of hexose and pentose sugars. Instead, E. coli will sequentially process them based on their energy content. From an industrial standpoint, this hierarchy means that the conversion of these sugar mixtures will be inefficient and necessitate complex processing schemes. In order to understand the mechanism of how E. coli sequentially utilizes these sugars, I systematically removed the various steps in the hexose and pentose metabolic pathways, both individually and in combination. The results from these experiments allowed us to conclude that the key bottleneck is due to interference due to AraC, the arabinose protein that regulates transport and metabolism of the sugar.;Collectively, the results from my research have identified that E. coli employs a complex cellular control system in order to selectively process individual sugars. By identifying the mechanism for this control, I have identified specific genetic targets for subsequent metabolic engineering. This discovery will enable the construction of E. coli strains capable of simultaneously and efficiently processing mixtures of hexose and pentose sugars. These strains will likely have application in biotechnology and also potentially in the production of cellulosic biofuels.
机译:微生物可用于从各种糖中生产各种化学药品,例如药物,酶和燃料。传统上,这些过程只涉及一种原料,最常见的是葡萄糖。最近,在开发直接使用基于植物的材料作为原料的方法方面已经投入了巨大的努力。使用基于植物的材料带来的挑战之一是它由多种糖组成,每种糖都具有独特的生化特性。尤其是,这些微生物可以加工糖的混合物吗?如果不能加工,是否可以对其进行改造,以便它们可以有效地完成这项任务?;在这项工作中,我将研究常见的工业微生物大肠杆菌(E. coli)吸收并代谢己糖和戊糖的混合物,这是植物基材料中的主要成分。我的重点是了解如何调节加工戊糖(如阿拉伯糖和木糖)的生化途径。特别是,只有存在目标糖时,大肠杆菌才会激活特定的途径。此外,不同的途径可以互相干扰,以至于一种糖的加工阻止了另一种糖的加工。使用遗传和分析方法,我发现大肠杆菌不会同时代谢己糖和戊糖的混合物。相反,大肠杆菌将根据其能量含量顺序处理它们。从工业的角度来看,这种层次结构意味着这些糖混合物的转化效率低下,并且需要复杂的加工方案。为了理解大肠杆菌如何顺序利用这些糖的机理,我系统地去除了己糖和戊糖代谢途径中的各个步骤,无论是单独还是组合。这些实验的结果使我们可以得出结论,关键的瓶颈是归因于AraC的干扰,AraC是调节糖的运输和代谢的阿拉伯糖蛋白。总体而言,我的研究结果确定大肠杆菌采用了复杂的细胞控制系统,以便选择性地处理单个糖。通过确定这种控制的机制,我确定了后续代谢工程的特定遗传靶标。该发现将使得能够构建能够同时且有效地处理己糖和戊糖的混合物的大肠杆菌菌株。这些菌株可能会应用于生物技术,也可能会用于纤维素生物燃料的生产。

著录项

  • 作者

    Desai, Tasha A.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号