首页> 美国卫生研究院文献>Plant Physiology >Can the Cyanobacterial Carbon-Concentrating Mechanism Increase Photosynthesis in Crop Species? A Theoretical Analysis
【2h】

Can the Cyanobacterial Carbon-Concentrating Mechanism Increase Photosynthesis in Crop Species? A Theoretical Analysis

机译:蓝细菌的碳富集机制能否增加作物的光合作用?理论分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Experimental elevation of [CO2] around C3 crops in the field has been shown to increase yields by suppressing the Rubisco oxygenase reaction and, in turn, photorespiration. Bioengineering a cyanobacterial carbon-concentrating mechanism () into C3 crop species provides a potential means of elevating [CO2] at Rubisco, thereby decreasing photorespiration and increasing photosynthetic efficiency and yield. The cyanobacterial is an attractive alternative relative to other s, because its features do not require anatomical changes to leaf tissue. However, the potential benefits of engineering the entire into a C3 leaf are unexamined. Here, a CO2 and HCO3 diffusion-reaction model is developed to examine how components of the cyanobacterial affect leaf light-saturated CO2 uptake () and to determine whether a different Rubisco isoform would perform better in a leaf with a cyanobacterial . The results show that the addition of carboxysomes without other components substantially decreases and that the best first step is the addition of HCO3 transporters, as a single HCO3 transporter increased modeled by 9%. Addition of all major components increased from 24 to 38 µmol m−2 s−1. Several Rubisco isoforms were compared in the model, and increasing ribulose bisphosphate regeneration rate will allow for further improvements by using a Rubisco isoform adapted to high [CO2]. Results from field studies that artificially raise [CO2] suggest that this 60% increase in could result in a 36% to 60% increase in yield.
机译:田间C3作物周围的[CO2]的实验性升高已显示出通过抑制Rubisco加氧酶反应并进而抑制光呼吸来提高产量。对C3作物物种进行生物工程化的蓝细菌碳浓缩机制()可提供提高Rubisco处[CO2]的潜在方法,从而减少光呼吸并提高光合效率和产量。蓝细菌相对于其他细菌而言是一种有吸引力的替代方法,因为其特征不需要对叶片组织进行解剖学改变。但是,尚未研究将整个工程改造为C3叶的潜在好处。在这里,建立了一个CO2和HCO3 -扩散反应模型,以检验蓝细菌的成分如何影响叶片光饱和CO2的吸收(),并确定不同的Rubisco同工型在叶片中的表现是否更好与蓝藻。结果表明,不含其他组分的羧基体的添加显着减少,并且最好的第一步是添加HCO3 -转运蛋白,因为单个HCO3 -转运蛋白的建模如下: 9%。所有主要成分的添加从24 µmol m −2 s -1 增加。在模型中比较了几种Rubisco亚型,通过使用适应于高[CO2]的Rubisco亚型,增加核糖双磷酸核糖的再生速率可以进一步改善。人为提高[CO2]浓度的田间研究结果表明,这种60%的增加可能导致产量增加36%至60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号