首页> 美国卫生研究院文献>Plant Physiology >Submergence-Induced Morphological Anatomical and Biochemical Responses in a Terrestrial Species Affect Gas Diffusion Resistance and Photosynthetic Performance
【2h】

Submergence-Induced Morphological Anatomical and Biochemical Responses in a Terrestrial Species Affect Gas Diffusion Resistance and Photosynthetic Performance

机译:淹没诱导的形态解剖学和生化响应在一种陆生物种中影响气体扩散阻力和光合性能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only little attention. Here, we combine several techniques to investigate the consequences of anatomical and biochemical responses of the terrestrial species Rumex palustris to submergence for different aspects of photosynthesis under water. The orientation of the chloroplasts in submergence-acclimated leaves was toward the epidermis instead of the intercellular spaces, indicating that underwater CO2 diffuses through the cuticle and epidermis. Interestingly, both the cuticle thickness and the epidermal cell wall thickness were significantly reduced upon submergence, suggesting a considerable decrease in diffusion resistance. This decrease in diffusion resistance greatly facilitated underwater photosynthesis, as indicated by higher underwater photosynthesis rates in submergence-acclimated leaves at all CO2 concentrations investigated. The increased availability of internal CO2 in these “aquatic” leaves reduced photorespiration, and furthermore reduced excitation pressure of the electron transport system and, thus, the risk of photodamage. Acclimation to submergence also altered photosynthesis biochemistry as reduced Rubisco contents were observed in aquatic leaves, indicating a lower carboxylation capacity. Electron transport capacity was also reduced in these leaves but not as strongly as the reduction in Rubisco, indicating a substantial increase of the ratio between electron transport and carboxylation capacity upon submergence. This novel finding suggests that this ratio may be less conservative than previously thought.
机译:当植物被淹没时,植物与环境之间的气体交换会受到严重阻碍,从而导致氧气和能量的短缺。减少氧气和碳水化合物短缺的一种直接方法是在水下继续光合作用,但这种可能性只受到很少的关注。在这里,我们结合了几种技术来研究陆地物种朗美氏酵母对淹没在水下光合作用的不同方面的解剖和生化反应的后果。淹没适应的叶片中叶绿体的朝向是表皮而不是细胞间空间,表明水下的CO2通过表皮和表皮扩散。有趣的是,表皮厚度和表皮细胞壁厚度在浸入后均显着降低,表明扩散阻力显着降低。扩散阻力的降低极大地促进了水下的光合作用,在所有调查的CO2浓度下,淹没适应的叶片中较高的水下光合作用率表明了这一点。这些“水生生物”中内部二氧化碳的可利用性增加,减少了光呼吸作用,进而降低了电子传输系统的激发压力,从而降低了光害的风险。淹没后的适应也改变了光合作用的生物化学,因为在水生叶片中观察到的Rubisco含量降低,表明羧化能力较低。这些叶片中的电子传输能力也降低了,但不如Rubisco的降低那么强烈,这表明浸没后电子传输能力与羧化能力之间的比率大大增加。这个新颖的发现表明,该比率可能比以前认为的要保守一些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号