首页> 美国卫生研究院文献>Plant Physiology >Temperature Acclimation of Photosynthesis and Related Changes in Photosystem II Electron Transport in Winter Wheat
【2h】

Temperature Acclimation of Photosynthesis and Related Changes in Photosystem II Electron Transport in Winter Wheat

机译:冬小麦光合作用的温度适应和光系统II电子传递的相关变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Winter wheat (Triticum aestivum L. cv Norin No. 61) was grown at 25°C until the third leaves reached about 10 cm in length and then at 15°C, 25°C, or 35°C until full development of the third leaves (about 1 week at 25°C, but 2–3 weeks at 15°C or 35°C). In the leaves developed at 15°C, 25°C, and 35°C, the optimum temperature for CO2-saturated photosynthesis was 15°C to 20°C, 25°C to 30°C, and 35°C, respectively. The photosystem II (PS II) electron transport, determined either polarographically with isolated thylakoids or by measuring the modulated chlorophyll a fluorescence in leaves, also showed the maximum rate near the temperature at which the leaves had developed. Maximum rates of CO2-saturated photosynthesis and PS II electron transport determined at respective optimum temperatures were the highest in the leaves developed at 25°C and lowest in the leaves developed at 35°C. So were the levels of chlorophyll, photosystem I and PS II, whereas the level of Rubisco decreased with increasing temperature at which the leaves had developed. Kinetic analyses of chlorophyll a fluorescence changes and P700 reduction showed that the temperature dependence of electron transport at the plastoquinone and water-oxidation sites was modulated by the temperature at which the leaves had developed. These results indicate that the major factor that contributes to thermal acclimation of photosynthesis in winter wheat is the plastic response of PS II electron transport to environmental temperature.
机译:冬小麦(Triticum aestivum L. cv Norin No. 61)在25°C下生长直至第三片叶子长约10 cm,然后在15°C,25°C或35°C下生长直到第三片完全发育叶片(在25°C下约1周,但在15°C或35°C下为2-3周)。在15°C,25°C和35°C发育的叶片中,CO2饱和光合作用的最佳温度分别为15°C至20°C,25°C至30°C和35°C。用隔离类囊体极谱法测定或通过测量叶中调制的叶绿素a荧光极谱法确定的光系统II(PS II)电子传输也显示了在叶片发育温度附近的最大速率。在各自的最佳温度下确定的CO2饱和光合作用和PS II电子传输的最大速率在25°C发育的叶片中最高,而在35°C发育的叶片中最低。叶绿素,光系统I和PS II的水平也是如此,而Rubisco的水平则随着叶片发育的温度升高而降低。对叶绿素a荧光变化和P700还原的动力学分析表明,在质体醌和水氧化部位电子传递的温度依赖性受叶片发育温度的调节。这些结果表明,导致冬小麦光合作用热适应的主要因素是PS II电子传递对环境温度的塑性响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号