首页> 美国卫生研究院文献>Philosophical Transactions of the Royal Society B: Biological Sciences >Incorporating uncertainty in predictive species distribution modelling
【2h】

Incorporating uncertainty in predictive species distribution modelling

机译:在预测物种分布建模中纳入不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
机译:由于需要解决生态问题(气候变化,生境破碎化和生物入侵),人们对物种分布模型(SDM)的兴趣日益增加。这些模型的预测为保护政策,入侵物种管理和疾病控制措施提供了依据。但是,预测容易受到不确定性的影响,其程度和来源常常无法被认识。在这里,我们在不确定性的背景下回顾了SDM文献,重点介绍了SDM的三个主要类别:基于细分的模型,人口统计模型和基于过程的模型。我们确定每个类别的不确定性来源,并讨论如何将不确定性最小化或将其包括在建模过程中,从而给出围绕预测的现实置信度。因为通常没有执行此操作,所以我们得出结论,SDM中的不确定性经常被低估,并且对地理分布的预测分配了错误的精度。我们确定了开发新统计工具将改善分布模型预测的领域,尤其是将不同类型的分布模型及其伴随的跨空间不确定性联系起来的分层模型的开发。最后,我们讨论了开发更具辩护性的方法来评估预测性能,量化模型拟合优度以及评估模型协变量的重要性的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号