首页> 美国卫生研究院文献>NPJ Systems Biology and Applications >L1000CDS2: LINCS L1000 characteristic direction signatures search engine
【2h】

L1000CDS2: LINCS L1000 characteristic direction signatures search engine

机译:L1000CDS2:LINCS L1000特征方向签名搜索引擎

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000 resource.
机译:目前,基于网络的集成细胞签名(LINCS)L1000数据集库包含超过一百万种化学干扰的人类细胞系的基因表达谱。通过独特的几种内在和外在基准测试方案,我们证明与目前用于计算L1000签名的MODZ方法相比,使用特征方向(CD)方法处理L1000数据可显着改善信噪比。 CD处理过的L1000签名通过称为L1000CDS 2 的基于Web的最新搜索引擎应用程序提供。 L1000CDS 2 搜索引擎提供了成千上万个小分子签名及其成对组合的优先级,可以使用两种方法预测它们模仿或逆转输入基因表达签名。 L1000CDS 2 搜索引擎还可以预测通过我们处理的L1000测定法分析的所有小分子的药物靶标。通过计算L1000小分子签名与从基因表达综合(GEO)提取的签名的大量集合之间的余弦相似性来预测目标,以针对哺乳动物细胞中的单基因扰动。我们应用了L1000CDS 2 来对预测也可以从GEO提取的670种疾病特征中逆向表达的小分子进行优先排序,并对可以模拟通过L1000测定法分析的22种内源性配体特征的表达进行优先排序。作为案例研究,为了进一步证明L1000CDS 2 的实用性,我们在30、60和120µmin时收集了感染埃博拉病毒的人细胞的表达特征。用L1000CDS 2 查询这些特征,我们确定了kenpaullone(一种GSK3B / CDK2抑制剂),我们在随后的实验中显示,该药具有剂量依赖性的体外抑制埃博拉感染的功效,而不会引起人细胞系细胞毒性。综上所述,L1000CDS 2 工具可以应用于许多生物学和生物医学环境,同时可以改善LINCS L1000资源的知识提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号